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Abstract

Discission Paper #11-02

The existence of competitive equilibrium for a large exchange economy over the commodity
space > will be discussed. We define the economy as a measurable map from a measure space to
the space of consumers’ characteristics following Aumann (1966), and prove the theorem without
the convexity of preferences. The case in which the indivisible commodities present will also be
discussed.
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1 Introduction

In this paper, we are concerned with an exchange economy with a continuum of consumers intro-
duced by Aumann (1966) and with an infinite time horizon introduced by Bewley (1970 and 1991),

respectively. The economy is formulated on the commodity space £°°,

0 = {& = ()] supiz1|€'] < +o0},

the space of the sequences with bounded supremum norms. We will deal with an exchange economy
throughout this paper, hence there exist no producers in the economy.

As we will see in the next section, the space of all summable sequences,

0= {pz (pt)‘ > Il < +00},

is a natural candidate of the price space. The value of a commodity £ = (£!) € £*° evaluated
by a price vector p = (p') € ¢! is then given by the natural "inner product" p& = Y2, p'¢h.
Bewley (1970) proved the existence of competitive equilibria for economies with finite number of
consumers on this commodity space.

The exchange economy with a measure space (4,.A4,v) of consumers was first introduced by
Aumann (1966) on a finite dimensional commodity space. As is well known, he defined the economy
by a measurable map £ : A — P x Q, where P is the set of preferences and (2 is the set of
endowment vectors. Each element a € A is interpreted as a "name" of a consumer, and each value
of the map &(a) = (74, wa) is the characteristics of the consumer a. He established the existence
of the competitive equilibrium of such an economy and observed that the convexity assumption
on the preference relations of the consumers is not necessary. This is a consequence of Liapunov’s
theorem which asserts that on the non-atomic measure space, the integration of a measurable
correspondence is a convex set. This means that even if the demand of an individual consumer
is not convex valued, the total demand which is defined by the integration over the set A of the
individual demand correspondence is convex valued. In the course of the proof of the existence
theorem, the /-dimensional version of Fatou’s lemma was essentially used.

Several authors have tried to unify the above results of Aumann and Bewley. For example,
Khan and Yannelis (1991) and Noguchi (1997a) proved the existence of a competitive equilibrium
for the economies with a measure space of agents in which the commodity space is a separable
Banach space whose positive orthant has a norm interior point'. Bewley (1991) and Noguchi
(1997b) proved the equilibrium existence theorems for the economies with a measure space of
consumers on the commodity space £*°. Bewley worked with an exchange economies, and Noguchi

(1997a and b) proved his theorems for the economies with continuum of consumers and producers.

1Since the space £°° is not separable, these results are not considered as generalizations of Bewley (1970).



These authors anticipated on their works that there are significant technical difficulties for
extensions of the Aumann’s theorem to infinite dimensional commodity spaces. They proved their
theorems by approximating the large-infinite dimensional economy by large-finite dimensional sub-
economies, a technique which we will also utilize in this paper. In the course of the approximation
they were expected to apply the Fatou’s lemma as Aumann did. On the finite dimensional spaces,
the only condition which is required to the demand correspondences is that they are integrably
bounded. The infinite dimensional version of Fatou’s lemma, however, requires that the demand
correspondences are contained in a convex valued correspondence (see for example, Yannelis (1991)
Theorem 5.2). Since the Liapunov convexity theorem fails in the infinite dimensional spaces, this
means that the convex valuedness of the demand correspondences themselves is strongly wanted.
Indeed, Khan and Yannelis, and Bewley assumed that the preferences are convex. Noguchi assumed
that a commodity vector does not belong to the convex hull of its preferred set. These assumptions
obviously weaken the impact of the Aumann’s classical result which revealed the "convexfying
effect" of large numbers of the economic agents.

In this paper, we will prove the existence of competitive equilibria of an exchange economy with
a measure space of the consumers on the commodity space £ without any convexity assumptions
on the preferences. The key assumption is that the consumptions set X which is identical for all

consumers is of the form
X=R\xZ Z={=(") et 0<¢ <P forall t>1},

for some B > 0, hence the consumption set is the product of the ¢-dimensional part and the
bounded subset of £*°. We call the first ¢ commodities the primary commodities (Section 2.1).

In Section 3, we will show that for this type of the consumptions set, the finite dimensional
approximation works without Fatou’s lemma or Liapunov’s theorem. Bewley (1991) assumed that
X ={=() e 0< & < Bforall t > 1} and Noguchi (1997b) also assumed that the
consumption set of each consumer is bounded uniformly over consumers. Hence we improved
their results essentially, since we discarded the convex preferences, and we relaxed those (uniform)
bounded conditions slightly, namely that the primary commodities are not assumed to be bounded
in the consumption set?

The purpose of including the primary commodities is, other than obtaining less restricted form
of the consumption set, to invoke the overriding desirability of the primary commodities (see Section
2.2) and prove that the prices of the primary commodities are positive (Lemma 5 in Section 3).
Hence positive amounts of the primary commodities as initial endowments are sufficient for each
consumer to have a positive income. Thanks to this, our assumptions on the initial endowments
(Assumptions (E) and (P) in Section 2.2) are much weaker than that of the other related literatures.
For example, Bewley (1991), Khan-Yannelis (1991), Noguchi (1997a and b), Rustichini-Yannelis

2If the commodity space was a general Banach space, the mathematical difficulties for proving existence without
the convexity of preferences will be so formidable. For this, see Rustichini-Yannelis (1991) and Podczeck (1997).



(1991) assumed that almost all consumers have his/her initial endowment in the (norm) interior
of the consumption set. Obviously such an assumption is very strong in the economies with a
continuum of traders.3

In Section 4, we will discuss the economy in which the non-primary commodities are consumed
only in the integer units, or they prevail in the market as the indivisible commodities along the
line of research initiated by Mas-Colell (1977) and Yamazaki (1978). We will prove the existence
of competitive equilibria if the endowment assignment for the primary commodities is dispersed
in the sense of Mas-Colell and Yamazaki and that of the non-primary commodities is a simple
function. Obviously the latter assumption is strong. Fortunately, however, there is a dense subset
of the economies satisfying that assumption, hence we can say that there are "many" economies

with equilibria.

3Precisely, Khan-Yannelis, Noguchi, Rustichini-Yannelis assumed that there exists ¢ € X such that w — ¢ belongs

to the (norm) interior of X.



2 The Model and the Result

2.1 Mathematical Preliminaries

As pointed out in Introduction, the commodity space of the economy in this paper is set to be

0 ={€=(&")] supi>1[€'] < +oo},

the space of the sequences with bounded supremum norms. It is well known that the space £*° is
a Banach space with respect to the norm ||£|| = sup;>1|¢'| for £ € £>° (Royden (1988)).
It is also well known that the dual space of £°° is the space of bounded and finitely additive set

functions on N which is denoted by ba,
ba = {w (2N R‘supEcN|7r(E)| < +oo, mM(EUF) =n(E) +n(F)

whenever ENF = @}.

Then we can show that the space ba is a Banach space with the norm

||| = sup{Z|7r(Ei)|‘ E,NE; =0 for i #j,n € N} .
i=1

Since the commodity vectors are represented by sequences, it is more natural to consider the

price vectors also as sequences rather than the set functions. Therefore the subspace ca of ba,

ca = {7‘(’ € ba‘ﬂ'(UfL":lEn) = Z?T(En) whenever E; NE; =0 (i # j)},
n=1

which is the space of the bounded and countably additive set functions on N is more appropriate
as the price space. Indeed it is easy to see that the space ca is isometrically isomorphic to the

space /1, the space of all summable sequences,

oo
0= {p =) Y_Ir'l< +oo},
t=1
which is a Banach space with the norm ||p|| = Y2, |p'|.
Then the value of a commodity ¢ = (£%) € £*° evaluated by a price vector p = (p') € ¢! is given
by the natural "inner product" p& = > ;2 p'¢t.
The set function 7 € ba is called purely finitely additive if p = 0 whenever p € ca and 0 < p < 7.

The relation between the ba and ca is made clear by the next fundamental theorem,

Fact 1 (Yosida-Hewitt). If 7 € ba and 7 > 0, then there exist set functions 7. > 0 and 7, > 0 in
ba such that 7. is countably additive and m, is purely finitely additive and satisfy 7 = 7. +m,.

This decomposition is unique.



On the space £°°, we can consider the several topologies. One is of course the norm topology
Tnorm Which was explained above. It is the strongest topology among the topologies which appear
in this paper.

The weakest topology in this paper is the product topology 74 which is induced from the metric

260 =3 5o =Sl for = (€. = (¢) e £,
— 2(1+[¢" = ')

The product topology is nothing but the topology of coordinate-wise convergence, or £ = (£¢) —
0 if and only if & — 0 for all t € N.

A net (£,) on £ is said to converge to 0 in the weak* topology or o(£>°,(')-topology if and
only if p&, — 0 for each p € £}. The weak* topology is characterized by the weakest topology on
0> which makes (£>°)* = ¢}, where L* is the dual space (the set of all continuous linear functionals
on L) of a normed linear space L. Then it is stronger than the product topology, since the latter
is characterized by £, — 0 if and only if e;£, — 0 for all for each e; = (0...0,1,0...) € ¢!, where
1 is in the t-th coordinate.

The strongest topology on ¢°° which makes (£>°)* = ! is called the Mackey topology 7(£>°, £*).
It is characterized by saying that a net (£,) on £ is said to converge to 0 in 7(£°°, ¢*)-topology
if and only if sup{|p&.||p € C} — 0 on every o(¢*,(°°)-compact, convex and circled subset C of
¢, where a set C is circled if and only if rC C C for —1 < r < 1, and the topology o (¢!, (>)
is defined analogously as o(£°°,¢!), namely that a net (p,) on ¢! is said to converge to 0 in the
o (0t £°°)-topology if and only if po& — 0 for each ¢ € £°°. The topology 7(£>°, ¢') is weaker than
the norm topology. Hence we have 74 C (£, ) C 7(£>°,0}) C Thorm-

Similarly, a net (7,) on ba is said to converge to 0 in the weak* topology or o(ba, £°°)-topology
if and only if 7,6 — 0 for each & € £°°.

We can use the next proposition on bounded subsets of £°°.

Fact 2 (Bewley (1991 a, p.226)). Let Z be a (norm) bounded subset of £>. Then on the set Z,
the Mackey topology 7(£°°, ¢!) coincides with the product topology 4.

In general, let L be a normed vector space and L* its dual space. A net (£,) in L converges to
& € L in the o(L, L*)-topology or weak-topology if and only if 7€, — 7€ for every m € L*. A net
(7o) in L* converges to m € L* in the o(L*, L)-topology or weak*-topology if and only if 7,& — ¢
for every £ € L.

Bounded subsets of £>° are o (£, (!)-weakly compact, namely that the weak* closure of the

sets are weak*-compact by the Banach-Alaoglu’s theorem.

Fact 3 (Rudin (1991, p.68). If L is a normed space, then the unit ball of L*, B = {7 € L*|||n|| < 1}
is compact in the o(L*, L)-topology.

Let (A, A,v) be a finite measure space. A map f: A — £ is said to be is weak*-measurable

if for each p € ¢!, pf(a) is measurable. A weak*-measurable map f(a) is said to be Gel’fand



integrable if there exists an element £ € > such that for each p € ¢*, p¢ = [ pf(a)dv. The vector
¢ is denoted by [ f(a)dv and called Gel’fand integral of f.

Fact 4 (Diestel and Uhl (1977, pp.53-4)). If f : A — (> is weak*-continuous and pf(a) is
integrable function for all p € ¢', then f is Gel’fand integrable.

Let S be a complete and separable metric space. We denote the set of all closed subsets of a
set S by F(S). The topology 7. on F(S) of closed convergence is a topology which is generated
by the base

[K;G...Gu|={F e FS)IFNK=0,FNG; #0,i=1...n}

as K ranges over the compact subsets of S and G; are arbitrarily finitely many open subsets of S.
It is well known that if X is locally compact separable metric space, then F(X) is compact and
metrizable. Moreover, a sequence F), converges to F' € F(S) if and ounly if Li(F,) = F = Ls(F},),
where Li(F},,) denotes the topological limes inferior of {F},} which is defined by

¢ € Li(F,) if and only if there exists an integer N and a sequence &, € F, for all n > N and
§n = & (n — 00),

and Ls(F,) is the topological limes superior which is defined by

¢ € Ls(F,) if and only if there exists a sub-sequence F, 6 with &, € F,, for all ¢ and &,, —
£ (¢ = ),

see Hildenbrand (1974, pp.15-19) for details.

The next Facts are also well known for the mathematical economics.

Fact 5 (Fatou’s lemma in ¢ dimensions, Hildenbrand (1974), p.69). Let (¢),en be a sequence of
integrable functions of a measure space (2,4, u) to ]Rﬂ. Suppose that lim [, ¢ndp exists.
Then there exists an integrable function ¢ : (22,4, u) — RY such that

(a) ¢(w) € Ls(¢pp(w)) a.e. in A

(0) Jo d(w)dp < limy, o0 [o Pn(w)dp.

Fact 6 (Hildenbrand (1974, Theorem 6, p.68). Let (¢),en be a sequence of measurable corre-
spondences of a measure space (Q, A, 1) to a bounded subset of R, . Then Ls([, ¢(a)dp) C

Ja(Ls(6(a))dp.

Fact 7 (Hildenbrand (1974, (2) and (37))). Let (Q,A,u) be a probability space and (S,d)

be a separable metric space. If f,,f are (Borel) measurable functions from A to S and
d(fu(a), f(a) = 0 ae. in i, then piof, 1 — pof L.



2.2 The Description of the Economy

We now describe our economy in this paper. Let 8 > 0 be a given positive number, and ¢ be
a positive integer. We will assume that the consumption set X of each consumer is the set of

nonnegative vectors whose coordinates after ¢ are bounded by £,
X={=(")er>| o< for t>1, €< for t > 1}

Of course the § > 0 is intended to be a very large number. We call the first £ commodities,

z',z% ...z the primary commodities. Then it is obvious that the consumption set is written as

X=PxZ,

where P = R} and Z = {z = (') € €| 0 < z' < B forall t > 1}. From now on, we will
sometimes denote £ = (x,2) € PxZ for £ € X. From Fact 2, we have 75 = (£, ) = 7(£>, (")
on the set Z. Since Z is compact in 74 (hence o(¢>°,¢') and 7(£>,¢')) topology, X = RfxZ is
locally compact separable metric space. Hence F(X xX) is a compact metric space, so that it is

complete and separable.

Remark. This type of a consumption set already appeared in Mas-Colell (1975) in which the
consumption set was assumed to be Ry xM, where M is a bounded subset of M(K), the
space of measures on a compact metric space K. He also assumed that the measures in M
are integer valued, and an element of Ry the homogeneous good. We will discuss a similar

situation in Section 4.

Let P C F(XxX) be the collection of allowed preference relations which will be assumed to
satisfy the following assumptions.

(i) =€ P is complete, transitive and reflexive,

(i7) (local non-satiation) for each £ € X and every neighborhood U of ¢, there exists ( € U
such that € < ¢, where & < ( means that (£,() ¢ =,

(731) (overriding desirability of the primary commodities) for each £ and ¢ € X and every
t=1...¢, there exists § > 0 such that £ < {(+ de;, where e; = (0...0,1,0...) and 1 is in the ¢-th
coordinate.

Note that preferences are 74 (hence o(£>°,¢') and 7(£°°,¢')) continuous, since P C F(X xX).

An initial endowment is assumed to be nonnegative vectors w of £>°, or w € £°. We will restrict

the set of ) of all allowed endowments is of the form
Q={w=(w")er°|o0<w <y, teN}

for some fixed positive number v < 3. It is 74-compact subset of £>°, hence (£, {*)-compact by
the same reason of the set Z. For £ € X = PxZ,let £ = (x,z), x € P and z € Z. Correspondingly,
we denote Q2 = Qp x Qz and w = (wp,wz) € Ap x Q.

Let (A, A,v) be a probability space of the consumers which is assumed to be atomless.



Definition 1. An economy is a Borel measurable mapping £ : A = P x Q, a+— (Zq,w(a)).

~a)

Since § is compact, it follows from Fact 4 that there exists the Gel'fand integral [, w qw(a)dv of
the map w: A — Q. For £ = (¢') € R® or £, ¢ > 0 means that £ > 0 for all ¢t and & > 0 means
that £ > 0 and £ # 0. £ > 0 means that £ > 0 for all ¢. Finally for £ = (£%) € £°°, we denote by
£ >> 0 if and only if there exists an € > 0 such that & > € for all ¢.

The following assumptions are well known and will be used in order to make every consumer’s

income to be positive.
Assumption (E). [, w(a)dv >> 0,
Assumption (P). Denoting w = (wp,wz) € Q, v({a € A| wp(a) > 0}) =1.

Definition 2. A pair (p,§) of a price vector p € £} and an integrable map £ : A — X is called a

competitive equilibrium of the economy €& if the following conditions hold,

(E-1) p&(a) < pw(a) and &(a) =, ¢ whenever p¢ < pw(a) a.e,
(E-2) fA a)dv < fA dv.

The condition (E-1) says that almost all consumers maximize their utilities under their bud-
get constraints. In the condition (E-2) which says that the total demand is equal to the total
endowment (the market condltlon) the Gel’fand 1ntegra1 [iz 4 2(a)dv exists by virtue of Fact 4 and
J4&(a)dv is equal to ([, (a)dv, [, z(a)dv), where [, x dl/ is the usual Lebesgue integral of x
w1th respect to the measure v.

The main result of this paper now reads

Theorem 1. Let £ be an economy which satisfies the assumptions (E) and (P). Then there exists

a competitive equilibrium (p, &) for £.



3 Proof of Theorem 1

Let £ : A — Px{ be the economy. For each n € N, let K™ be the canonical projection of /> to
R*, K" = {& = (&) € ¢ = (¢1,€2...€7,0,0...)}. Naturally we can identify K™ with R", or
K™~ R". Recall P =R’ and define

X"=Px(ZNK"), P"=PNF(X"xX"), Q" = Qpx(QzNK"),

and for every =€ P and w = (w!,w?... "™ "l ) € Q, we denote == N(X"xX™") € P"

and w, = (W, w?...w*" 0,0...) € Q" the canonical projection of = and w, respectively. They

induce finite dimensional economies £™ : A — P"x Q" defined by £"(a) = (=7, wn(a)),n =1,2....

We have o

Lemma 1. £"(a) — £(a) a.e.

Proof. See Appendix II. g

Lemma 2. For each n, there exists a competitive equilibrium (7, &, (a)) for the economy £™.
Proof. See Theorem Al in Appendix I. g

Then for each n, there exist a price vector ,, € ]Rfj‘" and an allocation (&,(a)) which satisfy

Tnén(a) < mpwn(a) and &,(a) = ¢ whenever 7,( < myw,(a) a.e,

and

/Aﬁn(a)dVS/Awn(a)du.

In the following, we will often denote &,(a) = (z,(a), z,(a)) € P x Z™, where Z" = Z N K™.

By the Fatou’s lemma in ¢-dimension (Fact 5), we have an integrable function x : 4 — R{,
such that x,(a) = x(a) a.e. and that [, x(a)dv < [, wp(a)dv. For each a € A, z,(a) € Z and Z
is compact in the weak*-topology, hence we have z(a) € Z with z,(a) = 2z(a) a.e. Consequently

we have &,(a) — £(a) € X a.e. We can show that
Lemma 3. z(-) is Gel’fand integrable.
Proof. See Appendix II. g

It follows from Lemma 1, Lemma 3 and [, &q(a)dv < [, wy(a)dv for all n that

/f(a)du: lim [ &.(a)dv < lim wn(a)duz/w(a)du,
A A A

n— o0 A n— o0

in which the first and the second equality follow from



Lemma 4. Let {f,} be a sequence of Gel’fand integrable functions from A to £>° which converges
a.e to f in the weak*-topology. Then it follows that [, fn(a)dv — [, f(a)dv in the weak*
topology.

Proof. See Appendix II. g

Without loss of generality, we can assume that 7,1 = Zfif pt, =1 for all n, where m, = (p)

and 1 = (1,1...). Here we have identified 7, € R“*" with a vector in ¢! which is also denoted by
Tn a8 Ty = (7,,0,0...). Since the set A = {r € bay| ||7]| = 71 < 1} is weak™ compact by the
Alaoglu’s theorem (Fact 3), we have a price vector m = (7p,7z), Tp = (pl) € R}, 7z € bay with
S P+ 771 =1 and such that 7, — 7 in the 7(R’) x o'(ba, £°)-topology, where 7(R’) is the
usual topology for R¢.

Lemma 5. 7p > 0.

Proof. Suppose not. Then we have p!, — p}» = 0 for some t = 1...¢. For w = (w') € Q, let
wh = (W' w0, L) Since 7 [, wT(a)y = 7 [, w(a)r > 0 by Assumption (E), it
follows that 7w™*(a) > 0 on a set with positive v-measure, hence 7,w;*(a) > 0 for n large
enough on a set with positive v-measure, since T,w; (a) = m,wt(a) = 7w *(a). (Recall
that m, = (p'...p"™™,0...) and w, ¢(a) is the projection of w~*(a) € £*° to R**".) Setting

P&, = mhw, t(a), we now define
Cn = dnee +wn(a) — w, ' (a),

where e, = (0...0,1,0...) and 1 is at the ¢t-th coordinate. Then we have 7,(, = mhwn(a)

and §,, — co. We now claim that

&n(a) <2 ¢, for n sufficiently large,

which yields a contradiction. Indeed, the set {£,(a)] n € N} is contained in a compact subset
C of X, and for each £ € C, one obtains ¢ > 0 such that

€ <, dcey +w(a) —w Ha).
Since <, is continuous, there exists a neighborhood U, of £ and an N7 € N such that
€' <a 5§et + Wn(a) - w;t(a)

for every ¢ € U and all n > N;. Since C is compact, we can take & ...¢n, such that
C C UM Ug,. Take an n > N; such that &, > maz{d, .0y, }- Then &u(a) <7 (, as
desired.

We now prove that

10



Lemma 6. {(a) <, ¢ implies that mw(a) < 7 a.e.

Proof. Suppose not. Then there exists ( = (¢*) € X such that 7¢ < 7w and &(a) <, ¢ on a set
with v-positive measure. By Lemma 4 and Assumption (P), we can assume that 7w(a) > 0
a.e. Since the preferences are continuous, we can assume without loss of generality that
7¢ < mw(a) and &(a) <, ¢. Let ¢, = (¢'...¢*™,0,0...) be the projection of ( to X™. Since
(n = C in the o(£>°, ¢')-topology, we have for sufficiently large N that 7(y < 7¢ < 7w(a)
and &(a) <4 (v, since 7 > 0 and (y < (. Since m, = 7 and &,(a) — £(a), it follows that
for some n > N, 0 < 7m,(n < mow(a) = mawn(a) and &,(a) <4 (N, or &(a) <7 (n. This

contradicts the fact that (7,,&,(a)) is an equilibrium for £™.

Let m = m. 4+ m, be the Yosida-Hewitt decomposition and denote m. = p. Suppose that
&(a) <4 ¢. Then we can assume that £(a) <, (, for n sufficiently large, hence it follows from
Lemma 6 that w¢, > mw(a) for n sufficiently large. We will show that (p,&(a)) is an equilibrium
of the economy &. Since m, is purely finitely additive, 7,({1...n}) = 0 for each n. It follows from
this and 7. > 0 that

WCn = (7rc + Wp)(n = 77ch < 7rc< = pC;

since ¢, < (. On the other hand, m, > 0 and w(a) > 0 imply that 7w(a) = (7. + mp)w(a) >

mew(a) = pw(a), and consequently we have p{ > pw(a). Summing up, we have verified that
&(a) < ¢ implies that pw(a) < p( a.e..

Since the preferences are locally non-satiated, there exists ( € X arbitrarily close to £(a) such
that £(a) < ¢, therefore we have

p&(a) > pw(a) a.e.

On the other hand, it follows from [, (a)dv < [, w(a)dv that

/Apf(a)d’/ :P/Af(a)d’/ Sp/Aw(a)dV = /pr(a)du.

Therefore pé(a) = pw(a) a.e. g

11



4 The Case of Indivisible Commodities

In this section, we discuss a model of large exchange economies containing the commodities which
are consumed in the integer unit, or the indivisible commodities.

We still assume that the primary commodities are divisible, hence £ € R for ¢+ = 1...4, but
the commodities ¢ > £ + 1 are indivisible, so that & € N for t > ¢ + 1. The consumption set X;q.

of each consumer in this section is then given by
Xigo ={6=(£) €] 0< €& < +oo for 1<t <L, eNE < for t >0+ 1}.

As in the previous section, X;g4, is isomorphic to ]Ri X Zigy = PXZiqy, where Z;q, = {€ = (€') €
(2| & e N < B for all t}. Similarly we define the set of allowed endowments Q;4, by

Qigo = {w = (W"] 0<w" < forall t,w'eN for t >¢+1}

and we sometimes write Q;q, = Qp X Qigy,z C ]Rf_ X Zidv-

The space of allowed preferences P;q, C F (X0 X Xiay) is defined as a compact set of continuous
preorders which satisfy the conditions (4),(#¢) and (¢i7) of the previous section. An economy &;qy is a
(Borel) measurable map from (A, A, v) t0 (Piav X Qidv, B(Pidv X Qidv)). The competitive equilibrium
(p, &) for the economy &4, is defined as in the same way as that of the previous section. In order
to handle the indivisible commodities on the infinite dimensional commodity space, we need the

extra condition. First we require the primary commodities are suitably "diffused" or "dispersed".

Assumption (D). v(a € A| Yi_, p'wh(a) = w}) = 0 for every p = (p') € R with p # 0 and
every w € R.

On the other hand, we need that the variations of the indivisible endowments of the economies

are very small.
Assumption (F). wy : A — Qy is a simple function.
We now state an equilibrium existence theorem with indivisible commodities.

Theorem 2. Let &;4, be an economy. Suppose that 4, satisfies the assumptions (E), (P), (D)

and (F). Then there exists a competitive equilibrium (p, §) for &;4,.

Remark. The assumption (D) implies that the distribution of the primary commodities are
"dispersed", namely that the distribution of their market values does not give a positive measure
on any specific value for each price system. It was first introduced by Mas-Colell (1977) and
generalized in this form by Yamazaki (1978). The role of this condition is well known. By the
indivisible commodities, the behavior of the individual demand generally exhibits the discontinuity
at some some price vector. However, by virtue of the assumption (D), the mass of the discontinuous
consumers will be 0 at each price vector, hence the aggregate demand preserves the upper hemi-

continuity. The assumption (F) is really a very strong assumption. Fortunately, however, Theorem
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3 shows that the set of economies satisfying the assumption (F) is a dense subset of the set of all

economies.

Proof of Theorem 2. The proof is almost the same as that of Theorem 1, so that we shall
only give a brief outline. From now on, we suppress idv for simplicity.
Let £™(a) = (=", wn(a)) be the finite dimensional sub-economies converging almost everywhere

to £(a) = (Za,w(a)). The economy ™ : A = P x Q" satisfies the assumptions of Theorem A2
in Appendix I, hence there exists a competitive equilibrium (7,,&,(a)) for each n. Then as in
the proof of Theorem 1, we can show that the sequences (7,,), (£.(a)) converges to m € ba, (£(a))
respectively, or m, — m in the 7(R®) x o(ba, £>°)-topology and &,(a) to £(a) € X a.e in the

o (0>, £%)-topology, respectively. By exactly the same argument of the proof of Theorem 1, we can

/A £(a)dv < /A w(a)dv.

Denote 7 = (mp,77) € R x ba. We can show Lemma 4 also holds here, hence 7p > 0.

also show that

We have only to take care of the indivisibilities to show Lemma 6, or namely that
&(a) <, ¢ implies that mw(a) < ¢ a.e.

Suppose not. Then there exists ( = (¢*) € X such that 7( < 7w(a) and &(a) <, ¢ on a set of
v-positive measure. Without loss of generality, we can assume that 7(, < 7w(a) and &(a) <. Cn
for some n, where ¢, is the projection of ¢ to R“*", or ¢, = (¢*...¢"",0,0...). We rewrite ¢,
as Cn = (CpyCzm), Cp = (¢1...¢Y and Cz,, = (C“F1...¢%T™,0,0...). mp > 0 and the assumption
(P) imply that 7w(a) > 0 a.e. When 7(,, < 7w, we can show exactly in the same way as in the
proof of theorem 1 that 7x(, < mywn(a) and Ex(a) <Y ¢, for some N > n, a contradiction.

If 7¢, = mw(a), then we can assume that (¢ > 0 for some ¢ = 1...¢. Indeed, if * = 0 for all

t=1...¢, it follows from the assumption (D) and 7p = (p’%) > 0 that

v ({a € A‘ m(0,(zn) = nw(a)}) =v ({a € A‘ i:pﬁgw}(a) =mz(Czn — wz)}> =0,

since the set {7z ((z» —wz)} is countable by the assumption (F) and the fact that the set of the

sequences of the form
{Czm= (¢ 0. )| C(KB)EN, t=L+1...0+n, n=12...}

is countable. Then we have a sequence ((;) with ¢ < (g1 < -+ < = (o, G € R{T™ for all i. Since
the preferences are continuous, 7(; < mw(a) and £(a) <, (; for i large enough. Hence this case is
reduced to the first case, and leads to a contradiction.

Let 7 = m, + 7. = m, +p be the Yosida-Hewitt decomposition. Then as in the proof of Theorem

1 we can show that

pé(a) < pw and &(a) =, ¢ wheneverp( < pw(a) a.e.
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This completes the proof. g

Although the assumption (F) is very strong, we can show that there are "many" economies
which satisfy the assumption (F) in the following sense.

Let & be the set of all economies, or & = {£ : A — P x Q)| £ is a Borel Measurable map.}.
Hildenbrand (1974) introduced a topology on the space of economies & in the following way.

According to him, a sequence of economies {&, = (%Z7,w"(a))} converges to an economy & =
(Za,w(a)) if and only if vo &1 — vo&~! in the weak topology of the measures, and [, w™(a)dv —
Jyw(a)dv. In other words, he introduces the metric ds on the space & defined by dg(&,E€') =
plro&,vol')+|[,wdv — [,w'dv|, where p is the Prohorov metric on M(P x Q) (Hildenbrand
(1974, p.49).

Then we can prove that

Theorem 3. Let & be the set of economies which satisfy the assumption (F). & is a dense
subset of &.

Proof. First we prove that

Lemma 7. There exists a sequence of simple functions {w%(a)} with w%(a) € Q4. z and wi(a) —

wz(a) a.e in the weak*-topology.

Proof. appendix II. g

It follows from Lemma, 7 that we can take a sequence {w™(a) = (wp(a),wy(a))} with w"(a) —

w(a) a.e in the weak*-topology. Define &, (a) = (Z4,w™(a)). Then by fact 6, we have

vo& it mvofTt,

and it follows from Lemma 4 that [, w"(a)dv — [, w(a)dv. g
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Appendix I

Since we did not find elsewhere finite dimensional equilibrium existence theorems with the forms
which we need in the text, we will give the proofs of them for the completeness. The consumption

set of each consumer is X = R x Z, where

Z={z=(")eRy| 2 <B,t=1...n}.

A preference relation 7-C X xX is a complete and transitive binary relation which is closed
relative to X x X, satisfies the local non-satiation and the overriding desirability of the primary
commodities. Recall that we denote by P the set of all allowed preference relations endowed
with the topology of closed convergence. Let (A4,.A,v) be the atomless measure space, and let

w:A— Q =R, xR} be an integrable map,

w:a w(a), / w(a)dv < +0o0,
A

which assigns the consumer a his/her endowment vector. An economy &£ is a measurable map of
AtoP xQ,

Eram (Zq,w(a)) € P xN.

~a

A feasible allocation is an integrable map f of A to X such that [, f(a)dv < [, w(a)dv. A
pair of a price vector m € ]Rej" and a feasible allocation (m, f) is competitive equilibrium of £ if
wf(a) < 7w(a) and f(a) =, € whenever 7€ < w(a) a.e. in A.

Theorem A1l. An economy £ has an equilibrium if (i) [, w(a) > 0 and satisfies

(ii) I/({a € A| w'(a) > 0 for some t = 1...6}) =1.

Proof. Let b= [, St (a)dy. Thenb > 0. Fork =1,2,..., define A, = {a € A| w(a) < kb1},
where 1 = (1...1) € R“™". Obviously ) # A; C A> C .... Let A, = {C N Ax| C € A} and 4
be the restriction of v to Ag. Since (A4, A,v) is atomless, so is (Ag, Ak, i) for each k. We then
define for each k the (truncated) consumption set by X = {£ € X| £ < kb1} and the (truncated)

demand correspondence
or(a,m) = {§ € Xk‘ ¢ < mw(a), and if 7{ < 7w(a), then & =, C},
where m € A = {z = (z*)| Yt 7" = 1}. The quasi-demand correspondence is defined by

or(a, ) if rw(a) >0,
I/)k(a,,ﬂ') =
{€ € Xi| 7§ =0} otherwise.
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Since X}, is compact, it is standard to verify that ¢ (a,m) # 0, and it follows from Corollary
2 of Hildenbrand (1974, p.104), v is closed relation, hence it has a measurable graph. We then

define the (truncated) mean demand

Oy (m) = Y (a,m)dyy, for ™€ A.
Ay

It is well known that the mean excess demand correspondence (i () = @4 () — [ 2, w(a)dv is
compact and convex valued (Hildenbrand (1974, p.62)). It is upper heml—contlnuous (Hlldenbrand
(1974, Proposition 8, p.73), satisfies the Walras law: 7 () < 0 for every 7 € A.

We can then apply the fixed point theorem

Lemma A1 (Hildenbrand (1974, p.39)). Let C be a closed convex cone with the vertex 0 in R
which is not a linear subspace. If the correspondence ¢ of C into R ™ is nonempty, compact
and convex valued and upper hemi-continuous, and satisfies 7 < 0 for every 7 € C, then
there exists 7* € C' with ©* # 0 such that ((7*) € polar(C), where polar(C) is the polar of
the set C,

polar(C) = {¢ e R™™| n¢ <0 for all m € C}.

Then for each k, there exists a price vector m;, € A and an integrable function f;(-) of Ay to R‘+™
such that

fr(a) € Yi(a, ) ae. in Ay (1)
fr(a)dy, < / w(a)dvg, k=1,2.... (2)
Ag A

We extend the domain Ay of fi to A by defining fr(a) = w(a) for a € A\Ai. Then the
condition (2) is replaced by

(AthVSAwwmmk:LQM. (3)

Since 7, € A, we can assume that 7, — 7 € A. Since fr(a) € X a.e. in A and the set X is
bounded from below, it follows from (3) that the sequence ([ 4 fr(a)dv) is bounded. Then by the
Fatou’s lemma in ¢-dimensions (Fact 5) that there exists an integrable function f of A to R® such
that

a) € Ls(fr(a)) ae. in A,

/f w</ w(a)d.

We complete the proof by showing that

f(a) € ¢(a,7) aein A.
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It follows from (1) and fx(a) — f(a) that 7 f(a) < 7w(a). Now, there exists a positive integer k(a)
for a such that

k > k(a) implies fi(a) € Yi(a,m) ae. in A,

for we can take k(a) as a positive integer not smaller than ||w(a)||/b. Then 0 < w'(a)|lw(a)|| < k(a)b,
t=1...4+n.

We claim that «t > 0 for ¢ = 1...¢. Suppose not. Then for some ¢t = 1...4, 7t = 0.
Since 7 [, w(a)dv > 0 by the assumption (i), hence 7 [, w(a)dv > 0 for k sufficiently large.
Therefore mw(a) > 0 on a set B C Ag(C Agq1 C -+ C A) of positive measure for k large enough.
Then for a € B, 9i(a,7r) = ¢r(a,n) for k large enough and 7°w®(a) > 0 for some s # t.
Take d},(a) > 0 so as to .o} (a) — miw®(a) = 0 and define §i(a) = min{d}(a), bk — w'(a)} and
Ck(a) = w(a)+0r(a)e;—w’(a)es, where e, = (0...0,1,0...0) and 1 is in the ¢-th coordinate. Then
we have 74 (a) < mpw(a) for all k large enough and i, (a) = min{ (7§ /7 )w* (a),bk—w'(a)} = +o0
as k — oo, hence fr(a) <, (x(a) for k large enough by the overriding desirability of the primary
commodities. This contradicts fy(a) € é(a, ).

It follows from the assumption (ii) that 7rw(a) > 0 for almost all a € A. For £ € X with
€ < mw(a), we can assume that 7§ < mw(a). Hence mp{ < mpw(a) and fi(a) =, & for k large

enough. By the continuity of =, we have f(a) =, &. 1

~

We now consider the model with indivisible commodities. The consumption set of each con-
sumer i X;q, = ]Re+ X Z, where
Z={z=("YeN"| 2! <B,t=1...n}.

A preference relation Z—C X4, XXiqv is a complete and transitive binary relation which is
closed relative to X;q, X X;40, satisfies the local non-satiation and the overriding desirability of the
primary commodities. P;q, is the set of all allowed preference relations endowed with the topology

of closed convergence. An economy & is a measurable map of A to Pigp X QLigw,

E:ram (Za,w(a)) € Pido X Qidy-

~a

A pair of a price vector 7 € ]Rff" and a feasible allocation (7, f) is competitive equilibrium of
Eif nf(a) < mw(a) and f(a) =, € whenever 7€ < 7w(a) a.e. in A.

Theorem A2. An economy £ has an equilibrium if [, w(a) > 0 and satisfies
(i) y({a € A| w'(a) >0 for somet=1.. K}) =1,

(ii) u({a c Al Yi_, plwi(a) = w}) =0 for every p = (p') # 0 and every w € R.
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Proof. Let b = [, Zfif wt(a)dv > 0. For k = 1,2,..., define the measure space (A, Ak, V),
the consumption set Xj and the (truncated) demand correspondence ¢ (a, ) as in the proof of
Theorem A1l. Since X} is compact, it is standard to verify that ¢ (a,m) # 0, and Proposition 2
of Hildenbrand (1974, p.102) applies also to the case of indivisible commodities, hence ¢ has a
measurable graph. We then define the (truncated) mean demand
Dy () = or(a,m)dyg, for ™€ A.
Ay
®(+) is compact and convex valued (Hildenbrand (1974, p.62)). In order to show that it is upper

hemi-continuous, we restrict its domain. Define
Qv = RE™ U{(=1,, (1/B)10)}, k=1,2...,

where 1, = (1...1) € R® and 1,, = (1...1) € R?, and let C(Q}) be a closed convex cone with the
vertex 0 which is generated by the set Q. Let A be the intersection of its polar set and A, or

A = {r = (") € R“™| 7 <0 for each ¢ € C(Qx)} NA.

Obviously C(Q1) D C(Q2) D --- D R”™ and C(Qk) — R™™ in the topology of closed
convergence, namely that R°T™ = Li(C(Q)) = Ls(C(Q4)). Consequently, A} C Ay C --- C A
and A = Li(Ag) = Ls(Ayg). Moreover, if 7 = (p,q) € Ay, where p € R® and q € R” with 7 # 0,
then p > 0 for all k. Let k be given. We will show that & : Ay — X}, is upper hemi-continuous.
Let (mn,&,) be a sequence in Ay x Xy, such that (7,,&,) = (7,§) € Ap x Xy, and &, € Pp(my)
for all n. Since X} is compact, it suffices to show that £ € @, (7). For each n, there exists an
integrable function f,, of Ay to X with f,(a) € ¢r(a,7,) a.e. in Ay and &, = fAk fn(a)dv. For
the price vector m € Ay, define a subset A (m) of A by

Ap(m) = {a € Ay| 7(0,¢) = 7w(a) for some ¢ = (2) € N"}.

Since Ag(m) = {a € Ag| Zle mlwl(a) = S, 7 (2t — w(a))} and 2!, W't (a) € N for
t =1...n, it follows from the assumption (ii) that vy (Ag (7)) = 0, since 7¢ > 0,t =1...4. We

then claim that
Ls(fn(a)) C dr(a,m) ae. in Ap\Ag(m). (4)

Let a € A\ Ak () be such that f,(a) € ¢r(a,m,) for all n, and let f,(a) — f(a) € Xj. Since
Tnfn(a) < maw(a) for all n, 7f(a) < 7w(a). For € = (z!...2T") € X} such that 7¢€ < 7w(a), we
have m,¢ < mpw(a) for all n sufficiently large. By the continuity of -, one obtains f(a) 7, & If
nf(a) = mw(a), for some t = 1...¢, there exist ! (i = 1,2,...) such that 2! < zb < .-+ = 2,
since a ¢ Ag(m). Let & be the vector which is equal to & = (z*) but whose t-th coordinate is
replaced by z%. Therefore it follows from & — ¢ that f(a) =, € by the continuity of .

The claim (4) combined with Fact (6) then implies that

£€Ls ( ; fn(a)dl/k> C /A Ls(fn(a))dv C or(a, m)dv, = P (7).
k k

Ak
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This proves the upper hemi-continuity of ®y.
We can then apply Lemma A1 (the fixed point theorem) to (i (7) = fAk or(a, m)dvy, _fAk w(a)dvy.
Then for each &, there exists a price vector 7, € Ay, and an integrable function f(-) of Ay to Rf+™

such that
fe(a) € ¢r(a,m) ae. in Ag
fr(a)dvy, —/ w(a)dv, € C(Qr), k=1,2.... (5)
Ay Ag

We extend the domain Ay of fi to A by defining fr(a) = w(a) for a € A\Ai. Then the
condition (5) is replaced by

/fk(a)dl/—/w(a)dVEC(Qk), E=1,2.... (6)
A A

Since 7, € A C A, we can assume that 7, — 7 € A. Since fr(a) € X ae. in A and
XN (f,w(a)dv+ C(Q1)) is a bounded set, it follows from (6) that the sequence ([, fr(a)dv) is
bounded. Then by the Fatou’s lemma in ¢-dimensions (Fact 5), there exists an integrable function
f of A to RF™ such that

f(a) € Ls(fr(a)) a.e. in A, (7)
/Af(a)dl/S/Aw(a)du,

since Ls(C(Qr)) = R“™. Now, there exists a positive integer k(a) for a such that
k > k(a) implies fr(a) € ¢r(a,m) ae. in A,

for we can take k(a) as a positive integer not smaller than ||w(a)||/b. Then 0 < w'(a)|lw(a)|| < k(a)b,
t=1...4+n.
We complete the proof by showing that

f(a) € ¢(a,m) aein A. (8)

It follows from (7) and fi(a) — f(a) that 7f(a) < 7w(a). Let a € A\ A(r), where A(7) = {a €
Al ©(0,¢) = mw(a) for some ¢ € N*}. For £ € X with 7€ < mw(a), we have f(a) =, & as before.
If 7¢ = mw(a), there exists a sequence & with & — & and 7¢; < 7w(a), since a ¢ A(w). Then
f(a) =4 &, hence f(a) =, & by the continuity of 7—,. Since v(A(w)) = 0, the claim (8) is verified

and the proof is complete. g
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Appendix 11

Lemma 1. £"(a) — £(a) a.e.

Proof. We show that X™ x X™ — X xX in the topology of closed convergence 7.. It is clear
that Li(X"xX™) C Ls(X"xX™) C XxX. Therefore it suffices to show that XxX C
Li(X"xX™). Let (£,¢) = ((€'),(¢*)) € XxX, and set &, = (2 ...2",0,0...) and similarly
(n for ¢. Then (&,,¢,) € X"x X" for all n and (&,,(n) — (§,(). Hence (§,() € Li(X™xX™).
Then it follows that ="=> N(X"xX") —=. Obviously one obtains w, — w in the o (¢>°, *)-
topology. Consequently we have £™(a) — £(a) a.e. on A.

Lemma 3. z: A — Z is Gel’fand integrable.

Proof. Since pz,(a) — pz(a) a.e for every p € (', z(a) is weak*-measurable. Since Z is
compact in the weak*-topology, it follows from the dominated convergence theorem that

Jilpzn(a)ldv — [, |pz(a)|dv < +oo for every p € £'. Hence Lemma follows fron Fact 4. g

Lemma 4. Let {f,} be a sequence of Gel’fand integrable functions from A to £>° which converges
a.e to f in the weak*-topology. Then it follows that [, fn(a)dv — [, f(a)dv in the weak*
topology.

Proof. Let p € /. Then we have
p [ fuwar = [ pr@i~ [ pr@iv=p [ faa,

hence [, fu(a)dv — [, f(a)dv in the (£, ¢')-topology. y

Lemma 7. There exists a sequence of simple functions {w%(a)} with w%(a) - wz(a) a.e in the

weak*-topology.

Proof. Since Q;4,,7 is a compact metric space, it is separable. Hence, there exists a dense count-
able subset Q, = {wl,w?...} of Qigy,z. Foreveryn € N, let Ul = {w € Qugp z| dz(w,w?) <
1/n}, where dz is a metric on Z. Then {U_} covers Q;4y, 7z, or Qigp,z C U2, UL for every n.
Note that U} is measurable for all n,i. Define A}, = w,'(U?). Obviously A? is a measurable
subset of A for all n,i. Set BJ = A7\ U/_! Ai. Then U2, B} D A and B N B} =0 for
j # k. We then define

. wl fora e Bi,

w},(a) =
0  otherwise.
Then wy(a) = 377, w! (a) is a simple function and w% (a) = wz(a) a.e in the weak*-topology.
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