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Abstract

　　　We prove that a compact-valued correspondence with strictly convex graph is continuous 
and that a compact-valued correspondence with convex graph is continuous on the interior of its 
domain. Some other results are useful in order to confirm, for example, the lower hemi-continuity 
of a correspondence whose graph is ‘not necessarily convex’ and have wide applicability to eco-
nomic theory.
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1．Introduction

　　　The first purpose of this paper is to prove that a correspondence with convex graph is lower 

hemi-continuous on the interior of its domain and that a correspondence with strictly convex graph 

is lower hemi-continuous (proposition 2.1). This proposition has some useful byproducts. In order to 

confirm the lower hemi-continuity of a correspondence whose graph is ‘not necessarily convex’, our 

proposition 2.2 is useful. For example, as a corollary of proposition 2.2 we get a result that any corre-
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spondence with open graph is lower hemi-continuous. At a boundary point of the domain we can not 

prove the lower hemi-continuity of a correspondence with convex graph because we have a counter 

example (c.f. the example in section 2).

　　　Our second purpose is to prove that a compact-valued correspondence with strictly convex 

graph is upper hemi-continuous (proposition 3.1), and that a compact-valued correspondence with 

convex graph is upper hemi-continuous on the interior of its domain (proposition 3.2). At a boundary 

point of the domain we can not prove the upper hemi-continuity of a correspondence with convex 

graph because we have a counter example (c.f. figure 1 in section 3).

　　　From these propositions we finally get the results that a compact-valued correspondence with 

strictly convex graph is continuous (proposition 4.1) and a compact-valued correspondence with con-

vex graph is continuous on the interior of its domain (proposition 4.2).

　　　In section 5, we refer to some applications of our results to economics. It seems that our prop-

ositions have wide applicability to economic theory which has many convex structures.

2．Lower Hemi-Continuity

　　　We use the term ‘correspondence’ as a ‘nonempty-valued relation’, i.e. we assume that f(x) ≠ 

φ for all x ∈ X.

　　　Definition 2.1.1　Let X, Y be subsets of metric spaces, and x′ ∈ X. A correspondence f: X → Y 

is ‘ lower hemi-continuous (and we abbreviate this to l.h.c.) at x′ ’ if, for every y′ ∈ f(x′) and for every 

sequence { xn } n ∈ N in X which converges to x′, there exists a sequence { yn } n ∈ N which converges to 

y′ with yn ∈ f(xn) for all n ∈ N. If f is l.h.c. at every point of X, we say that ‘ f is l.h.c.’. (Stokey and Lu-

cas 1989).

　　　Definition 2.1.2　Let X, Y be subsets of topological spaces, and x′∈ X. A correspondence f: 

X → Y is ‘ lower hemi-continuous (and we abbreviate this to l.h.c.) at x′ ’ if, for every open set U in Y 

with f(x′) ∩U≠φ, there exists a neighborhood V of x′ such that f(x) ∩U≠φ, for all x ∈ V. If f is l.h.c. 

at every point of X, we say that ‘ f is l.h.c.’. (Berge 1963 or Hildenbrand 1974).

　　　Definition 2.2　For a correspondence f: X → Y, the graph of f means the set G(f).

G(f) ≡ { (x, y) | x ∈ X, y ∈ f(x) }

　　　Since a correspondence f: X → Y can be defined as a subset of product X × Y, there is no es-
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sential difference between G(f) and f itself. But, in order to appeal to geometrical image of convexity, 

we use the term ‘graph of a correspondence’.

　　　Definition 2.3　Let A be a subset of a linear metric space, Aa be the closure of A and Ai be 

the interior of A. If the set

A′ ≡ {λx + (1−λ) y | x, y ∈ Aa, 0 < λ< 1, x≠y}

is contained in Ai, we say that ‘A is strictly convex’.

　　　We prove the following proposition.

　　　Proposition 2.1　We consider sets X ⊂ Rm, Y ⊂ Rn and a correspondence f: X → Y (Here, Rm 

is the m dimensional real space ).

　　　1) If the graph of f, G(f), is convex, then f is l.h.c. at any point in the interior of X.

　　　2) If G(f) is strictly convex, then f is l.h.c.

　　Proof  Let us consider (x′, y′) ∈ G(f). For ε> 0 and for i ∈ N, we define B i , A i and Pi as follows.

Bi ≡ { (x, y) | d ( (x′, y′), (x, y) ) < ε/i, x ∈ X and y ∈ Y}

Ai ≡ Bi ∩ G(f) 

Pi ≡ { x | ∃ y: (x, y) ∈ Ai }

　　　Since Ai is the intersection of convex sets, Ai is convex. Pi is also convex because it is a projec-

tion of a convex set. 

　　　Proof of 1)　First, we show that if x′ is an interior point of X, then it is also an interior point 

of Pi by the induced topology of X.

　　　We suppose that x′ is a boundary point of Pi , then, by the separation theorem, there exists a 

supporting hyperplane H and the supporting halfspace S, with the following properties:

x′ ∈ H, H ⊂ S, Pi ⊂ S and X−S is not empty and open.

　　　Let us pick out arbitrary x1 ∈ X−S and y1 ∈ f(x1), and define the sequence of (xn, yn ) as fol-

lows:

xn = (1−1/n) x′ + x1/n 

yn = (1−1/n) y′ + y1/n

　　　Here we remark that xn ∈ X−S for any n ∈ N. Since (x1, y1) ∈ G(f), and since (xn, yn) is a con-

vex combination of (x′, y′) and (x1, y1), it follows that (xn, yn) ∈ G(f) for any n ∈ N. There exists a suffi-
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ciently large number M such that (xn, yn) ∈ Bi for n ≥ M. Therefore (xn, yn) ∈ Ai and xn ∈ Pi for n ≥ M. 

On the other hand, we know xn ∈ X−S for any n ∈ N. This is a contradiction.

　　　From the above fact, we know that, for any i ∈ N, x′ is an interior point of Pi by the induced 

topology of X. It is easily seen that Pi+1 ⊂ Pi . Let { xm } m ∈ N be a sequence in X which converges to 

x′. For any i, we can take a large number m(i) with the property ; ‘ xm ∈ Pi for any m ≥ m(i) ’. We can 

choose such a function, m: N → N, satisfying that m(i) ≤ m(i+1) ( the axiom of choice which we as-

sume all over this paper ). Since xm(i) ∈ Pi, there exists ym(i) such that (xm(i), ym(i) ) ∈ Ai ⊂ Bi. Then the 

sequence { (xm(i), ym(i) ) } i ∈ N converges to (x′, y′).

　　　Since xm ∈ Pi for m with m(i) < m < m(i +1), there exists ym such that (xm, ym) ∈ Ai ⊂ G(f) for 

xm ∈ Pi. Now we have constructed the sequence { (xm, ym) } m ∈ N in G(f) that converges to (x′, y′). There-

fore the sequence { ym } m ∈ N converges to y′ and ym ∈ f(xm) for all m ∈ N. 

　　　Proof of 2)　Now, it is sufficient to consider only boundary points of X. Let us assume that x′ 

is a boundary point of X and (x′, y′) ∈ G(f). 

　　　First we prove that f(x′) is a singleton (a set which has only one element). Suppose there exists 

an element y″∈ f(x′) with y″≠ y′. Then, for λ with 0 < λ < 1, 

z ≡ λ (x′, y′) + (1 −λ ) (x′, y″) 

is an interior point of G(f) by the strict convexity of G(f). A ball with center z and sufficiently small 

radius ε > 0,

B(z) ≡ { (x, y) | d ( z, (x, y) ) < ε, (x, y) ∈ Rm+n },

is contained in G(f). Therefore the projection of B(z) into Rm,

P(z) ≡ { x | d (x′, x) < ε , x ∈ Rm },

is contained in X. This indicates that x′ is an interior point of X. By this contradiction, f(x′) must be a 

singleton.

　　　Now we can show that x′ is an interior point of Pi by the induced topology of X. Let us sup-

pose that x′ is a boundary point of Pi. Then there exists a Cauchy sequence { xn } n ∈ N in X such that 

xn ∉ Pi for all n ∈ N and that its limit point is x′. We choose arbitrarily yn in f(xn) and define zn as fol-

lows:

　　　　 1 ．zn is a convex combination of (x′, y′) and (xn, yn).

　　　　 2 ．The distance between zn and (x′, y′) is ε/i.

　　　Such zn ∈ Rm+n always exists for every n ∈ N because xn ∉ Pi, (xn, yn) ∈ G(f), (xn, yn) ∉ Ai and (xn, 

yn) ∉ Bi . Then { zn } n ∈ N is a bounded sequence in Rm+n and has a Cauchy subsequence. We denote its 

limit point by (x′, y″). Since zn ∈ G(f) for all n ∈ N, (x′, y″) belongs to the closure of G(f). By the strict 
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convexity of G(f), for any λ′ with 0 < λ′ < 1,

λ′ (x′, y′) + (1−λ′) (x′, y″)

is an interior point of G(f) and λ′ y′ + (1−λ′)y″ belongs to f(x′). We know that y″≠y′ since the dis-

tance between y″ and y′ is ε/i > 0. Therefore λ′ y′ + (1−λ′) y″≠y′ for any λ′ with 0 < λ′ < 1. This 

contradicts the fact that f(x′) is a singleton.

　　　We know now that x′ is an interior point of Pi . From this fact, we can prove 2) by similar way 

to our proof of 1).

� QED

　　　A correspondence with convex but not strictly convex graph is not always l.h.c.

　　　Example Let X be a (closed) disk in R2 whose boundary contains { (0, 0) } and X′ be { (x, 0) ∈ R3 

| x ∈ X }. We define G as the convex hull of { (0, 0, 1) } ∪ X′. Then f(x) ≡ { y | (x, y) ∈ G } defines a 

correspondence f: X → R whose graph, G, is weakly convex. However this correspondence is not l.h.c. 

at ( 0, 0 ) ∈ X. In fact, we can take a Cauchy sequence, { xn } n ∈ N, on the boundary of X which con-

verges to ( 0, 0 ) and f(xn) = { 0  } for all n except that f( 0, 0 ) = [ 0, 1 ].

　　　Dutta and Mitra 1989 gives another example.

　　　We can generalize our proposition 2.1.1) as follows. 

　　　Proposition 2.2　We consider sets X ⊂ Rm, Y ⊂ Rn, and a correspondence f: X → Y. If for any 

point x′ in the interior of X and for any point y′ in f(x′), there exists a neighborhood V(x′) of x′, and a 

neighborhood U(y′) of y′ such that the correspondence h:V(x′) → U(y′) defined by h(x) = f(x) ∩ U(y′) 

has convex graph, then f is l.h.c. at any point in the interior of X.

　　　Proof　Let x′ be an interior point of X and { xn } n ∈ N be a Cauchy sequence in X which con-

verges to x′. For a point y′ ∈ f(x′), h(x) = f(x) ∩ U(y′) with convex graph is l.h.c. at x′ by proposition 

2.1.1)). There exists a sufficiently large number M and Cauchy sequence { yn } n ∈ N in Y such that yn ∈

h(xn) ⊂ f(xn) for n ≥ M and { yn } n ∈ N converges to y′.

� QED

　　　When we specialize X = V(x′) and Y = U(y′), then proposition 2.2 turns out proposition 2.1.1).

　　　The following corollary is a direct consequence of proposition 2.2.

　　　Corollary 2.1　Consider X ⊂ Rm and Y ⊂ Rn. Then a correspondence f:X → Y with open 

graph is l.h.c.
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3．Upper Hemi-Continuity

　　　Definition 3.1  Let X, Y be two topological spaces and f: X → Y be a correspondence. We say f 

is ‘upper hemi-continuous (and abbreviate this to u.h.c.) at x′ ∈ X’ if, for every neighborhood U of

f(x′), there exists a neighborhood V of x′ such that f(x) ⊂ U for every x ∈ V. The correspondence is 

called ‘u.h.c.’ if it is u.h.c. at every x ∈ X.

　　　Proposition  3.1  Let X be a subset of a linear metric space and Y be a subset of Rn. Then a 

compact-valued correspondence f: X → Y with strictly convex graph is u.h.c.

　　　Proof　Let X and Y be subsets of linear metric spaces L and M respectively, and f:X → Y be 

a correspondence. We consider the following three conditions:

　　　①　G(f) is strictly convex,

　　　②　for every x ∈ X, f(x) is closed by the topology of M and

　　　③　for every x ∈ X, f(x) is bounded.

　　　Then we will prove the following two results.

　　　1 ) If f satisfies ① and ② , then G(f) is closed by the topology of the product space L × M.

　　　2 ) If M = Rn, f satisfies ③ , and G(f) is (weakly) convex and closed by the topology of the prod-

uct space L × M, then f is u.h.c.

　　　Proof of 1)　Let { (xn, yn) } be a Cauchy sequence in G(f), and (xo, yo) ∈ L × M be the limit point 

of this sequence. All we have to do is to show that (xo, yo) ∈ G(f). Since (xo, yo) is a point of the closure 

of G(f), by ① ,

λ (xo, y′) + (1−λ) (xo, yo) ∈ G(f)

for any y′ ∈ f(xo) and for any real number λ with 0 < λ < 1. Then λy′ + (1−λ)yo ∈ f(xo) and λy′ + 

(1−λ) yo → yo as λ → 0. By ②, yo ∈ f(xo), i.e. (xo, yo) ∈ G(f).

　　　Proof of 2)　We suppose f is not u.h.c. at some point x′ ∈ X. Then there exists a neighborhood 

U of f(x′) such that f(V) ∩ Uc≠ φ for any neighborhood V of x′ ( Here, Uc is the complement of U. 

Without loss of generality, we can assume that U is an open subset of Rn . For whenever U′ is open by 

the topology of Y, there exists an open subset U of Rn such that U′ = U ∩ Y and Y−U′ ⊂ Rn−U ≡ 

Uc ). Therefore we can take a sequence { xn } n ∈ N in X which converges to x′ and has the property :

f(xn) ∩ Uc ≠φ for any n ∈ N

( For example, we can take balls with center x′ and radius 1/n as neighborhoods of x′ ). Then, for 
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any n ∈ N, we have an element yn such that

yn ∈ f(xn) ∩ Uc.

　　　Since f(x′) is bounded by ③ , there exists a bounded open set W with U ⊃ W ⊃ f(x′). Let us 

choose an arbitrary point y′ in f(x′), and let Wb be the set of all boundary points of W. Then we have 

the fact :

y′ ∈ f(x′) ⊂ W and yn ∈ Rn−W for every n ∈ N,

and there exists λn with 0 ≤ λn ≤ 1 such that	

λn y′ + (1−λn) yn ∈ Wb for every n ∈ N

( For our purpose it is sufficient to take λn = inf { λ | λy′ + (1−λ) yn ∈ W, 0 ≤ λ ≤ 1 } ). Since Wb is 

bounded, the sequence { λn y′ + (1−λn) yn } n ∈ N has a Cauchy subsequence { λn(i)y′+ (1−λn(i)) yn(i) }i ∈ N . 

Let y″ be the limit point of this sequence. Note that y″∈ Rn−W. According to n(i), we also get subse-

quences { xn(i) } i ∈ N of { xn } n ∈ N , { yn(i) } i ∈ N of { yn } n ∈ N and { λn(i) } i ∈ N of { λn } n ∈ N . Then we define zn(i) 

as follows :

zn(i) ≡ λn(i) (x′, y′) + (1−λn(i) ) (xn(i), yn(i) ).

　　　It follows that zn(i)∈G(f) because y′∈f(x′), yn(i)∈f(xn(i)) and G(f) is convex (note that strict convexi-

ty of G(f) is unnecessary here). The limit point of the sequence { zn(i) } i ∈ N is (x′, y″), because { xn(i) } i

∈ N converges to x′ and { λn (i) y′ + (1−λn (i)) yn (i) } i ∈ N converges to y″. Since 

zn(i) ∈ ( X × (Rn−W) ) ∩ G(f) 

and G(f) is closed, (x′, y″) belongs to ( X× (Rn−W) ) ∩ G(f). Therefore 

y″∈ Rn−W and y″∈ f(x′)

which contradicts our assumption W ⊃ f(x′).

� QED

　　　According to 1) and 2) in the proof of proposition 3.1, we have the following two corollaries.

　　　Corollary 3.1　Let X and Y be subsets of linear metric spaces and f: X → Y be a correspon-

dence. If the graph, G(f), of f is strictly convex and f(x) is closed for all x ∈ X, then G(f) is closed.
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　　　Corollary 3.2　Let X be a subset of a linear metric space, Y be a subset of Rn and f:X → Y be 

a correspondence. If f(x) is bounded for all x ∈ X and the graph of f is (weakly) convex and closed, 

then f is u.h.c.

　　　We can not remove conditions ① and ② . Figure 1 gives an example of f; f satisfies ② , G(f) is 

weakly convex instead of ① and f is not u.h.c. at α . Figure 2 gives an example of f; f satisfies ① , 

does not satisfy ② and is not u.h.c. at x ∈ (α, β).

　　　Proposition 3.2　Let X and Y be subsets of Rm and Rn respectively, f: X → Y be a compact-

valued correspondence, and G(f) be the graph of f. If G(f) is convex, then f is u.h.c. at any interior 

point of X.

　　　We will prove this proposition by using the following two lemmas.

　　　Lemma 3.1　Let G be a convex set in Rm+n, and we define 

X≡{ x ∈ Rm | ∃ y ∈ Rn ( (x, y) ∈ G ) }　　( the projection of G on Rm ). 

If G has an interior point, and x′ is an interior point of X, then there exists a y′ ∈ Rn such that (x′, y′) 

is an interior point of G.

　　　Lemma 3.2　Let G be a convex set in Rn, Ga be the closure of G and Gi be the interior of G  

( then the interior of Ga is denoted by Gai ). If G has an exterior point, then Gai = Gi.

G(f)

β

β

b

c

a

α

X＝Y＝［α，β］⊂ R
f(x)＝｛c｝ if   x＝α
f(x)＝［a，b］ if   x≠α

Figure 1

G(f)

β

βα

X＝Y＝［α，β］⊂ R
f(x) is open at x with α ＜x ＜ β

Figure 2
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　　　Proof of Lemma 3.1　Since x′ is an interior point of X, there exists a neighborhood U of x′ 

such that U ⊂ X . Let (x1, y1) be an interior point of G. If x1 = x′, there is nothing to prove. So we as-

sume that x1≠x′. Let us pick up an element x2 from the set

{ αx1 + (1−α) x′ |α∈ R } ∩ U

with α < 0 . Then 

x′=λ*x2 + (1−λ*) x1, 

for some λ* with 0 < λ* < 1.

　　　Since x2 ∈ X, we can find y2 ∈ Rn such that (x2, y2) ∈ G. Since (x1, y1) is an interior point of G, 

we can take a ball B in Rm+n with center (x1, y1) and sufficiently small radius with B ⊂ G.

　　　Let us define the set :

A ≡ { λ (x2, y2) + (1 − λ ) (x, y) | 0 ≤ λ ≤ 1, (x, y) ∈ B }.

Since (x2, y2) ∈ G, B ⊂ G and G is convex, A is contained in G. Now we consider

y′ = λ* y2 + (1 −λ*) y1.

Then it is easily seen that the following point in Rm+n

(x′, y′) =λ* (x2 , y2) + (1−λ*) (x1 , y1)

belongs to A, and a ball with center (x′, y′) and sufficiently small radius is contained in A. This means 

that (x′, y′) is an interior point of G. 

� QED

　　　Proof of Lemma 3.2  It suffices to show that Gai ⊂ Gi. Suppose there exists x ∈ Rn such that x

∈ Gai and x ∉ Gi. Since x is a boundary point of G and G has an exterior point, by the separation theo-

rem we can find a hyperplane H with the following property :

H separates Rn into two subsets S and Sc (Sc = Rn − S) where 

x ∈ H, H ⊂ S and G ⊂ S.

　　　Since x ∈ H, any neighborhood of x has an element of Sc. On the other hand, since x ∈ Gai, 

some neighborhood of x must be contained in Ga and does not have any exterior point of G. This is a 

contradiction.
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� QED

　　　Proof of Proposition 3.2  We showed that the point (x′, y″) in the proof of proposition 3.1 be-

longs to G(f)a ( G(f)a is the closure of G(f) ) by using (weak) convexity of G(f), without using strict con-

vexity of G(f). But we used strict convexity of G(f) in order to show that G(f) is closed then (x′, y″) 

∈ G(f) which has completed the proof of proposition 3.1 Therefore we will prove that (x′, y″) ∈ G(f) 

without using strict convexity but assuming that G(f) is (weakly) convex and x′ is an interior point of 

X. We also use the fact (x′, y″) ∈ G(f)a.

　　　We can assume that G(f) has an interior point without loss of generality (If G(f) has no interior 

point, G(f) is a subset of a hyperplane in Rm+n. Without loss of generality, we can assume that the di-

mensions of X and Y are, respectively, m and n). When x′ is an interior point of X, by lemma 1 there 

exists y′ ∈ f(x′) such that (x′, y′) is an interior point of G(f). Suppose that the point (x′, y″) in the proof 

of proposition 3.1 is not an element of G(f). Let us define the set 

C ≡ { λy′+ (1−λ) y″ | 0 ≤λ≤ 1 } ∩ f(x′).

Since y″∉ f(x′) and f(x′)is compact, there exists yo ∈ C which is the nearest point from y″ and we put

yo = λ*y′ + (1 − λ*) y″.

Since y″ ∉ f(x′), λ* is positive and we can take λ** with 0 < λ** < λ*. 

　　　Since (x′, y′) is an interior point of G(f), a ball B ⊂ Rm+n with center (x′, y′) and sufficiently small 

radius is contained in G(f). Let us define the set A as

A ≡ {λ(x, y) + (1−λ) (x′, y″) | 0 ≤ λ ≤ 1, (x, y) ∈ B }.

　　　It is well known that when a set is convex, the closure of the set is also convex. Therefore

G(f)a is convex. Since (x′, y″) ∈ G(f)a and B ⊂ G(f) ⊂ G(f)a, A is contained in G(f)a.

　　　It is easily seen that the point

λ** (x′, y′) + (1−λ**) (x′, y″)

is an interior point of A. Therefore this is an interior point of G(f)a because A ⊂ G(f)a. By lemma 2, 

this is also an interior point of G(f). This means that 

λ**y′ + (1−λ**) y″ ∈ f(x′) and 0 < λ** < λ*.

Then this contradicts our choice of λ*. Therefore (x′, y″) ∈ G(f).

� QED
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　　　Corollary 3.3　We consider sets X ⊂ Rm, Y ⊂ Rn and a compact-valued correspondence f: X 

→ Y with convex graph G(f). If x′ is an interior point of X and (x′, y″) is a boundary point of G(f), then 

(x′, y″) belongs to G(f).

4．Continuity

　　　Definition 4.1　A correspondence f: X → Y is continuous if it is both l.h.c. and u.h.c.

　　　Combining proposition 2.1.2) and proposition 3.1, we get the following proposition.

　　　Proposition 4.1　We consider sets X ⊂ Rm and Y ⊂ Rn. Then a compact-valued correspon-

dence f: X → Y with strictly convex graph is continuous.

　　　Combining proposition 2.1.1) and proposition 3.2, we have the following proposition.

　　　Proposition 4.2  We consider sets X ⊂ Rm and Y ⊂ Rn. Then a compact-valued correspon-

dence f: X → Y with convex graph is continuous on the interior of X.

5．On some applications

　　　Stokey and Lucas showed a misleading proposition in their first version ( 1989 p. 61 theorem 

3.5). After the pointing out by the author (1991), it was corrected as follows:

　　　Let f: X → Y be a correspondence, and let G(f) be the graph of f. Suppose that G(f) is convex ; 

that for any bounded set X′ ⊂ X, there is a bounded set Y′ ⊂ Y such that f(x) ∩ Y′≠φ, all x ∈ X′. 

Then f is l.h.c. at every interior point of X. 

　　　In their first version, it used to have no the word ‘interior’ and the proof was incomplete. We 

have a counter example in section 2. Their revised theorem above is useful. However, our proposi-

tion 2.1.1) is more general than their theorem. Actually, the condition ‘that for any bounded set X′ ⊂ 

X, there is a bounded set Y′ ⊂ Y such that f(x) ∩ Y′≠φ , all x ∈ X′’ is unnecessary. 

　　　Appling our theorem 4.1, we get a modification of the maximum theorem of Berge 1963.

　　　Proposition 5　We consider sets X ⊂ Rm and Y ⊂ Rn. If f: X → R is a continuous function and 

g: X → Y is a compact-valued correspondence with strictly convex graph, then the maximum value, 
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M, defined by M(x) = max｛ f(y) | y ∈ g(x) ｝, is continuous on X and the correspondence of maximiz-

ers, h: X → Y, defined by h(x) =｛ y | y ∈ g(x), f(y) = M(x) ｝is u.h.c.

Walker 1979 presents another modification. 

　　　It seems that our results are applicable to economic analyses such as general equilibrium anal-

ysis, dynamic programming, linear programming and especially the theory of intertemporal alloca-

tion.
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