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1　Introduction

　　　Today, many people use consumer-to-consumer electronic commerce sites to buy （or sell） 

goods. In particular, with the emergence of online auction sites （e.g., eBay and Yahoo!）, many people 

have become familiar with auctions. In such tradings, sellers often sell two or more items as bundling 

auctions. However, other sellers sell the same items separately. In this paper, we focus on bundling 

auctions of online auction markets. We propose an empirical model of online common value auctions 

for both bundling auctions and separate auctions.

　　　Some papers focus on the bundling auction model in theoretical literature. Palfrey （1983） stud-

ied bundling auctions with two bidders. He found that bundling auctions generate more expected 

revenues with two bidders within the private values paradigm. Chakraborty （1999） extended Pal-

frey （1983） to a general number of bidders. He found that if the number of bidders grows large, the 

expected revenue of separate sales becomes greater than that of bundling auctions. While 

Chakraborty （1999） studied the private values model, Chakraborty （2002） studied the common value 

auction model and found the effect that they call the winner’s curse reduction effect in bundling auctions. 

He also compared the expected revenues between bundling auctions and separate auctions.

　　　Our empirical example involves eBay mint coin auctions in 2014. In our data set, there are two 

kinds of coin sets: 11-coin sets and 22-coin sets. We regard the 11-coin sets as separate items and the 

22-coin sets as bundled items. We also conduct some counterfactual simulations using the estimated 

parameters. We evaluated the winner’s curse reduction effect in the sense of Chakraborty （2002） 

and compared revenue between bundling auctions and separate auctions. Chakraborty （2002） 
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showed that bidders will bid more aggressively in separate auctions than in bundling auctions; he 

named this effect the winner’s curse reduction effect. We measured the magnitude of the winner’s curse 

reduction effect. We found that bidders in separate auctions will bid $2.5 higher than in bundling auc-

tions. For revenue comparison, we found that the expected revenue in a bundling auction is higher 

than that in separate auctions by $0.37. Since the average transaction price of bundled items （22-coin 

sets） is $8.98, the value of additional gains are not negligible.

　　　The rest of this paper is organized as follows. In Section 2, we describe the model of online 

auctions within the pure common value paradigm. Additionally, following Chakraborty （2002）, we re-

view the theoretical results for the bundling auctions. Section 3 describes the estimation strategy for 

the model described in Section 2. We utilize Bayesian estimation to estimate the structural parame-

ters. In Section 4, we estimate the structural parameters using real auction data. Our empirical ex-

ample is eBay mint coin set auctions in 2014. In Section 5, we compute the winner’s curse reduction 

effect in the sense of Chakraborty （2002） and compare the revenue between separate auctions and 

bundling auctions using the estimated parameters. Section 6 features some concluding remarks.

2　Model

　　　There are N risk neutral potential bidders and a seller. The number of potential bidders, N , is 

a random variable and an exogenous variable. The seller sells two different objects k＝1 and 2. In 

this model, we consider the pure common value model in which the ex post valuation of the item is 

the same for each bidder. Let V1 and V2 denote the values for items 1 and 2 , respectively. The real-

izations of values are unknown to the bidders. Instead, each bidder, i, receives her private signals 

corresponding to V1 and V2 , which are denoted by S1i and S2i , respectively. Each bidder knows the 

realization of her own private signal but does not know the others’ before auctions. However, both 

the distribution of S1i and the distribution of S2i are common knowledge among bidders. In this paper, 

we consider a specific functional form for V1 and V2. We assume that the value of each item to bid-

ders is the average of their signals. That is, the valuations take the form of

respectively.1 For the bundled item, we impose the additive separability on bidder i ’s signal for the 

bundled items, Si . Namely, we assume that Si＝S1i+S2i . Then, from our specific functional form for 

the value, the valuation of the bundled item, V, is

　　　We assume that Sk1, …, SkN are independently and identically distributed. Namely, Ski ～ i.i.d. 

N

i＝1
∑V1＝ S1i and V2＝

1
N

N
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Fk（x） for k∈｛1, 2｝. We assume that S1i and S2i are independently distributed. Furthermore, we as-

sume that for each k∈｛1, 2｝, Ski is affiliated with S1i＋S2i in the sense of Milgrom and Weber （1982）.

2.1　Equilibrium

　　　In this paper, we regard online eBay auctions as second-price auctions. That is, each bidder 

submits her bid and the bidder with the highest bid among bidders wins the object and pays the 

second highest bid. Then, the equilibrium bidding strategies in separate auctions for items k＝1 and 

2 are straightforward arguments from Milgrom and Weber （1982）.

　　　Let Yki be the highest signal except bidder i’s signal, Ski. That is, Yki＝maxj≠i Skj. Then, the 

equilibrium bidding functions for bidder i with private signals S1i＝s1 and S2i＝s2 in separate auc-

tions are given by

　　　　　　　　b1（s1）＝E［V1 |S1i＝s1, Y1i＝s1］ and b2（s2）＝E［V2 |S2i＝s2 , Y2i＝s2］ （1）

for items k＝1 and 2, respectively.

　　　Analogously, the equilibrium bidding function for bundling auctions can be derived in the 

same manner. Let Si＝S1i＋S2i be the sum of bidder i’s signals, S1i and S2i. Furthermore, let G（·） de-

note the cumulative distribution function of Si＝S1i＋S2i. In other words, G（·）　is the convolution of 

F1（·） and F2（·）. Then, S1, …, SN are also independently and identically distributed with the CDF G（·）. 

Namely, Si～ i.i.d. G（s）.

　　　Let Yi be the highest signal except bidder i’s signal, Si . That is, Yi＝maxj≠i Sj . Then, using an 

argument similar to that of a separate auction, we gain the equilibrium bidding function for bidder i 

with signal Si＝s in the bundling auctions

b（s）＝E［V1＋V2 |Si＝s, Yi＝s］. （2）

2.2　Bundling auctions versus separate auction

　　　Since we computed the various effects of bundling auctions in our empirical example, it is 

worth-while to review the theoretical result of bundling auctions within the common value paradigm. 

Chakraborty （2002） discussed the bundling auctions model and the separate auctions model within 

the pure common value paradigm. Furthermore, he discussed the effect of bundling auctions and 

separate auctions with some useful examples. In this subsection, we review the results of 

Chakraborty （2002）.

　　　Chakraborty （2002） discussed that bundling auctions have a winner’s curse reducing effect. 

The intuitive explanation of the winner’s curse reducing effect is as follows. In separate auctions of k

＝1 and 2, winning the items k＝1, 2 implies that each winner has the highest signal on each item. 

On the other hand, in a bundling auction, winning the bundled item implies that the winner has the 

highest signal for the bundled item but not for individual items, k＝1 and 2. Therefore, winning the 
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bundling auction is not as bad as winning two separate auctions. The following theorem is the Theo-

rem 1 in Chakraborty （2002）. They call the result of Theorem 1 the winner’s curse reducing effect.

Theorem 1 （Chakraborty （2002））. A bidder bids more aggressively when the objects are bundled.

That is,

b（s）≥b1（s1）＋b2（s2）,

where s＝s1＋s2 .

3　Estimation

　　　The results of equilibrium bidding strategies （1） and （2） are familiar to economists. However, 

few empirical studies focus on the structural estimation of common value auction models. The main 

reason is the negative result of nonparametric identification on the common value auction model. 

Athey and Haile （2002） and Athey and Haile （2007） showed the conditional distribution of Ski , given 

Vk is not identified from the observed bids in the common value auction model without additional 

identification conditions.

　　　Therefore, most studies of structural estimation of the auction model focus on the private val-

ues model. Recently, some papers have studied the identification condition of the common value auc-

tion model. For example, Li, Perrigne, and Vuong （2000） showed the identification under the additive 

separability of the common value component. Février （2008） restricted the shape of the density 

function of the common value and showed the identification of the common value auction model. 

d’Haultfoeuille and Février （2008） proposed the identification condition of the common value auction 

model, assuming the support of a private signal is finite and varies depending on the common value. 

In this paper, we impose parametric specification to avoid the identification problem.

3.1　Estimation procedure

　　　We observe Tk auctions indexed by t=1, …, Tk for item k∈｛1, 2｝. The same items are each 

sold in separate auctions. Analogously, we observe T auctions indexed by t= 1, …, T for bundling 

auctions. We can observe each bidder’s bid, Bkit , and the number of actual bidders, nt , for bidder i, 

for item k∈｛1, 2｝, and for auction t∈｛1, …, Tk ｝. We cannot observe each bidder’s signals, Skit and 

Sit, the common value, Vkt and Vt , and the number of potential bidders, Nt . We assume that the 

number of potential bidders is constant among auctions as is the maximum number of actual number 

of bidders observable by econometricians such as Guerre, Perrigne, and Vuong （2000）.

　　　Following the example of Bajari and Hortaçsu （2003）, we assume that bidders’ signals, Skit, are 

normally distributed with mean, µkt, and variance, σ2
kt . That is, for k∈｛1, 2｝, Skit～N（µkt, σ2

kt）, where 
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µkt=α’k Xkt and σ2
ktk= （exp（βk1）, …, exp（βkd））Xkt , where d represents the dimensionality of the vec-

tor of the coefficient parameter, and Xkt is the vector of the auctionspecific covariate. The values of 

αk=（αk1, …, αkd） and βk=（βk1, …, βkd） are unknown to econometricians; therefore, we estimate these 

parameters.

　Recall that the equilibrium bidding function bk（·） is given by

bk（sk）=E（Vkt |Skit=sk, Ykit=sk）.

Since bk（·） is a strictly increasing function, there exists an inverse function ϕk（·）. Note that since we 

considered second-price auctions, the winning bid of item k, wkt , in auction t is the second-highest bid 

in auction t. Therefore, observing the winning bids, the likelihood function for separate auctions is 

given by

 （3）

where fk（·） is the probability density function of Skit . In this case, fk（·） is the normal density function.

　　　The likelihood function for bundling auctions can be derived in the same manner. We assume 

that Sit is the normal random draw with mean µt and variance σ2
t. That is, Sit ～ N （µt, σ2

t） where 

µt=α’Xt and σ2
t=（exp（β1）, …, exp（βd））Xt , where α=（α1, …, αd） and β=（β1, …, βd） are the unknown 

coefficient parameter vector to be estimated.

　　　Since the equilibrium bidding function, b（·）, is a strictly increasing function, there exists an in-

verse function, ϕ（·）. Similar to the separate auctions, since we considered second-price auctions, the 

winning bid, wt , in auction t is the second-highest bid in auction t. Therefore, in observing the win-

ning bids, the likelihood function for the bundling auction is given by

 （4）

where ɡ（·） is the probability density function of Sit. In this case, ɡ（·） is the normal density function.

t＝1

Tk

∏ [Fk（ϕk（wkt）|μkt , σ2
kt）]N－2（ ）1   1   N－2

N
L（w1, …, wkt |αk , βk ,（Xk1, …, Xkt））＝

1
b′k（ϕk（wkt））

×fk（ϕk（wkt）|μkt , σ
2
kt）

×[ 1－Fk（ϕk（wkt）|μkt , σ2
kt）],

t＝1

T

∏ [G（ϕ（wt）｜μt , σ2
t）]N－2（ ）1   1   N－2

N
L（w1, …, wt |α, β,（X1, …, Xt））＝

1
b′（ϕ（wt））

×ɡ（ϕ（wt）|μt , σ2
t）

×[ 1－G（ϕ（wt）|μkt , σ2kt）],
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4　Empirical examples

4.1　Data description

　　　Our empirical example consists of auctions of 2005 U.S. mint coin set held on eBay in 2014. 

Data were collected from 208 eBay auctions completed in October, 2014. There are two types of 

goods in our data set. One is the 11-coin mint set and the other is the 22-coin mint set. The 22-coin 

mint set includes two packages of the 11-coin mint set. The sample sizes are 107 and 101, respectively.

　　　As Bajari and Hortaçsu （2003） and Wegmann and Villani （2011） studied coin auctions in their 

empirical illustrations, coin auctions are excellent examples in the empirical study of the common 

values auction model. While Bajari and Hortaçsu （2003） and Wegmann and Villani （2011） both col-

lected various kinds of coins in their empirical illustrations, we only collected 2005 U.S. mint coin sets 

（11-coin sets and 22-coin sets）. Therefore, we estimated the distribution of signals with fewer co-

variates.

　　　Tables 1 and 2 provide the summary of statistics for the 11-coin set and 22-coin set, respec-

tively. The first column describes the variables. “Winning bid” is the second highest bid in the eBay 

auction. As seen in Tables 1 and 2, on average, one could purchase a mint coin set for $7.3 or $9.2 for 

the 11 -coin set or 22 -coin set, respectively. “Positive reputation” denotes the number of positive 

ratings a seller has received. Similarly, “Negative reputation” is the sum of the number of negative 

ratings and the number of neutral ratings a seller receives. Since the number of neutral ratings and 

the number of negative ratings are usually small relative to the number of positive ratings, we 

Mean Std Median Max Min

Winning bid 8.98 3.35 8.25 17.0 3.3
Positive reputation 22,553.29 33,006.16 1,303.00 73,892.00 0.00
Negative reputation 13.39 17.17 3.00 57.00 0.00

Number of actual bidders 3.47 2.04 3.00 7.00 1.00
Days 5.98 2.06 7.00 10.00 1.00

Table 2: Summary statistics （2005 U.S. mint coin sets, （22-coin set） # of obs. = 101）

Mean Std Median Max Min

Winning bid 6.55 2.64 5.99 15.5 2.25
Positive reputation 6,515.74 17,105.87 388.00 73913 5
Negative reputation 9.52 28.49 0.00 194 0.00

Number of actual bidders 2.87 1.61 3.00 6.00 1.00
Days 5.26 2.28 7.00 10.00 0.00

Table 1: Summary statistics （2005 U.S. mint coin sets, （11-coin set） # of obs. = 107）
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regard neutral ratings as negative ratings. “Number of actual bidders” is the number of participants 

who actually bid at auction t. “Days” denotes the duration of the auctions held.

4.2　Estimation results

4.2.1　The 11-coin set

　　　For the 11-coin set, we assume that the signal, Si, follows the normal distribution. That is,

Sit～ i.i.d. N（µ1t, σ2
1t ）,

where µ1t=α0+α1Xt1+α2Xt2, and σ2
1t=exp（β0 ）+ exp（β1 ）Xt1+ exp（β2 ）Xt2. The parameters α=（α0, α1, 

α2） and β=（β0, β1, β2）are unknown to econometricians.2 In this empirical illus- tration, the auction-

specific covariates, Xt=（Xt1, Xt2） are the logarithm of “Positive reputation+1” and “Negative reputa-

tion + 1”; that is,

Xt1= log（Positive reputation+1） and Xt2= log（Negative reputation+1）

for observed auction t.

　　　The prior distribution of α and β are α～N（0, 10I） and β～N（0, 10I）, where I is the identity 

matrix of order 3.

　　　We used the random walk-based Metropolis-Hastings algorithm to generate random draws 

from the posterior distributions. The number of iteration is 20000, and the burn-in period is 1000. Ta-

ble 3 reports the probabilities parameters take positive （PP）, the p-values of convergence diagnos-

tics for the MCMC （CD） and Inefficiency Factors （IF）. All p-values of the convergence diagnostics 

are more than 0.06. Furthermore, the inefficiency factor values are sufficiently low. In particular, the 

inefficiency factors are 39.88 to 95.65, which implies that we would obtain the same variance of the 

posterior sample means from 209 uncorrelated draws, even in the worst case. Figure 1 shows the 

sample paths of estimated parameters. From Figure 1 it can be seen that the sample paths of these 

parameters converge to posterior distributions. Thus, we conclude that the sample paths of estimat-

ed parameters converge to posterior distributions.

　　　Figure 2 shows the posterior densities of parameters for the 11-coin set. Table 4 and Figure 2 

Parameter Covariate （Coefficient Parameter） PP CD IF

µ1 Const. （α0） 1.00 0.77 87.41
log（Pos.Rep. +1）（α1） 1.00 0.85 95.65
log（Neg.Rep. +1）（α2） 0.46 0.96 66.27

σ2
1 Const. （β0） 0.51 0.06 54.85

log（Pos.Rep. +1）（β1） 1.00 0.32 47.15
log（Neg.Rep. +1）（β2） 0.44 0.77 39.88

Table 3:  The convergence diagnostics for the  MCMC （CD） and the inefficiency factors （IF） for the 
11-coin set
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Parameter Covariate （Coefficient Parameter） Mean Stdev. 95% credible interval

µ1 Const. （α0） 4.59 0.71 （3.23, 6.00）
log（Pos.Rep. +1） （α1） 0.46 0.17  （0.12, 0.79）
log（Neg.Rep. +1） （α2） −0.03 0.39 （−0.78, 0.73）

σ2
1 Const. （β0） 0.01 1.76 （−3.56, 3.12）

log（Pos.Rep. +1） （β1） 2.27 0.22  （1.71, 2.60）
log（Neg.Rep. +1） （β2） −0.35 1.60 （−3.70, 2.44）

Table 4: Posterior inferences for the 11-coin set

Figure 1: Sample paths of parameters （11-coin set）
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provide some posterior inferences. In Table 4, “Mean,” “Stdev,” and “95% interval” represent the pos-

terior mean, the posterior standard deviation, the 95% credible interval, respectively.

　　　As seen in Table 4, the posterior mean of α0 is 4.59. Since α0 is the constant term correspond-

ing to the mean parameter µ1, when a seller has no reputation （i.e., a new entrant）, the mean of the 

bidders’ signal is $4.59. As seen in Table 4, the posterior mean of α1 is 0.46, which is the coefficient 

parameter of the covariate log（Positive reputation+1） corresponding to the mean parameter µ1 . 

Therefore, if a seller earns a more positive reputation, the mean of the bidders’ signals will increase. 

This result seems intuitively plausible. The posterior mean of α2 is −0.03, and α2 takes a positive val-

ue with probability 0.46. Since α2 is the coefficient parameter of the covariate log（Negative reputa-

tion+1） corresponding to the mean parameter µ1 , the number of negative ratings does not have 

much effect on the mean of the bidder’s signal. This result is not intuitively plausible. One possible 

reason for the tiny effect of negative reputations on the mean of bidders’ signals is the positive corre-

lation between positive reputations and negative reputations. The correlation coefficient between 

positive reputations and negative reputations is 0.86 , which represents a high positive correlation. 

From Table 1, the number of negative ratings is small relative to the number of positive ratings. 

There are very few auctions in which sellers receive negative ratings. In most cases, sellers receive 

positive ratings. Many sellers with log（Positive reputation+1）<7（i.e., sellers with positive reputa-

tions, less than 1100 total） had no negative ratings. All sellers with log（Positive reputation+1）≥7 

had some negative ratings.

　　　Therefore, sellers with more trades receive more （both positive and negative） ratings. From 

these facts, we conclude that the number of negative ratings does not represent the insincerity of 

seller but, rather, the abundance of the seller’s experience, in our empirical example.

4.2.2　The 22-coin set

　　　Similar to the case of 11-coin set, we assume that the signal Si follows the normal distribution. 

That is,

Sit～ i.i.d. N（µt, σ2
t）,

where µt=α0+α1Xt1+α2 Xt2, and σ2
t= exp（β0）+ exp（β1）Xt1+ exp（β2）Xt2 . The parameters α=（α0, α1, 

α2） and β=（β0, β1, β2 ） are unknown to econometricians. In this empirical illustration, the auction-spe-

cific covariates, Xt=（Xt1, Xt2） are the logarithm of “Positive reputation+1” and “Negative reputa-

tion+1”.

　　　The prior distribution of α and β are α～N（0, 100I） and β～N（0, 100I）, where I is the identi-

ty matrix of order 3.

　　　Similar to the case of 11-coin set, we use the random walk-based MH algorithm to generate 

random draws from the posterior distributions. We draw 30000 random samples from the posterior 

distribution via MH algorithm for each parameter. The burn-in period is 3000.
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　　　Table 5 provides the summary of statistics of posterior distributions and the p-values of con-

vergence diagnostics for the MCMC （CD） and Inefficiency Factors （IF）. All p-values of the conver-

gence diagnostics are more than 0.06. Furthermore, the inefficiency factors are less than 188. There-

fore, we would obtain the same variance of the posterior sample means from 159 uncorrelated draws, 

even in the worst case. Figure 3 shows the sample paths of estimated parameters. We conclude that 

the sample paths of estimated parameters converge to posterior distributions.

　　　Figure 4 shows the posterior densities of parameters for the 22-coin set. Table 6 and Figure 4 

provide some posterior inferences. As seen in Table 6, the posterior mean of α0 is 5.15. Since α0 is the 

constant term corresponding to the mean parameter µ. Therefore, when a seller has no reputation 

（i.e., a new entrant）, the mean of the bidders’ signal will be $5.15. The posterior mean of α1 is 0.70. 

Since α1 is the coefficient parameter of the covariate log（Positive reputation+1） corresponding to the 

mean parameter µ, we find that positive reputation has positive effect on the mean of bidders’ sig-

nals. The posterior mean of α2 is −0.28 and α2 takes a positive value with probability 0.30. Recall that 

Parameter Covariate （Coefficient Parameter） PP CD IF

µ1 Const. （α0） 1.00 0.19 166.34
log（Pos.Rep. +1） （α1） 0.99 0.10 187.68
log（Neg.Rep. +1） （α2） 0.30 0.06 160.56

σ2
1 Const. （β0） 1.00 0.85  53.65

log（Pos.Rep. +1） （β1） 0.18 0.81  21.81
log（Neg.Rep. +1） （β2） 0.24 0.41  16.99

Table 5:  The convergence diagnostics  for the  MCMC （CD） and the inefficiency factors （IF） for the 
22-coin set

Figure 3: Sample paths of parameters （22-coin set）
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α2 is the coefficient parameter of the covariate log（Negative reputation+ 1） corresponding to the 

mean parameter µ. According to our results, the number of negative ratings does not have much 

effect on the mean of bidders’ signals. This result is not plausible to our intuition. A possible reason 

is the same as in the case of 11-coin set. That is, a high positive correlation between positive reputa-

tions and negative reputations. The correlation coefficient between positive reputations and negative 

reputations is 0.92, which represents a high positive correlation between positive reputations and 

negative reputations. Table 2 shows the number of negative ratings is small relative to the number 

of positive ratings. There are very few auctions in which sellers receive negative ratings. In most 

cases, sellers receive positive ratings. Analogous to the case of 11-coin set, Many sellers with log

（Positive reputation+1）<7.2 （i.e., sellers with positive reputations, less than 1330 total） had no neg-

ative ratings. All sellers with log（Positive reputation+1）≥7 had some negative ratings. We conclude 

that the number of negative ratings does not represent the insincerity of seller but, rather, the abun-

dance of the seller’s experience. As a result, negative ratings do not have much impact on the mean 

Parameter Covariate （Coefficient Parameter） Mean Stdev. 95% credible interval

μ Const. （α0） 　5.15 1.36 （2.53, 7.90）
log（Pos.Rep. +1） （α1） 　0.70 0.29 （0.12, 1.25）
log（Neg.Rep. +1） （α2） −0.28 0.58 （−1.42, 0.89）

σ2 Const. （β0） 　4.68 0.24 （4.27, 5.02）
log（Pos.Rep. +1） （β1） −3.56 3.79 （−12.37, 1.71）
log（Neg.Rep. +1） （β2） −3.18 3.94 （−12.21, 2.48）

Table 6: Posterior inferences for the 22-coin set

Figure 4: Posterior densities （22-coin set）
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of bidders’ signals.

5　Counterfactual simulations

　　　In this section, we compute the winner’s curse reduction effect in the sense of Chakraborty 

（2002） and compare the revenue of separate auctions and bundling auctions using the estimated pa-

rameters from Section 4.3

　　　In our empirical model, the distribution of bidders’ signals depends on auction-specific covari-

ates. We compute the winner’s curse reduction effect and the expected revenue for a “representa-

tive” auction using the sample means of covariates, log（Positive reputation+1） and log（Negative 

reputation+1）, in Tables 1 and 2 and the posterior mean of the estimated parameters in Tables 4 

and 6. The sample means of log（Positive reputation+1） and log（Negative reputation+1） are

log（Positive reputation+1） =6.77 and log（Negative reputation+1） =1.34,

respectively. The number of participants for a representative auction is N=7. Subsequently, the bid-

ding functions can be computed using equations （1） and （2）.

　　　In our empirical example, since the separate items, k=1 and k=2, are the same item, we can-

not estimate the parameters for item k=2 directly. In other words, we cannot obtain the estimates 

for coefficient parameters （α, β） for item 2 from observed bids. However, for an arbitrary fixed co-

variates （and hence for the representative auction）, the distribution of bidders’ signals for item 2 can 

be identified. Since bidder i ’s private signal for item k=1, S1i, and bidder i ’s private signal for item 

k=2, S2i, are independent, the distribution of bidders’ signals for item 2 can be recovered from the 

identified distributions of bidders’ signals for item 1 , S1i, and bidders’ signals for bundled item, Si. 

Note that while we assume the independence, we do not assume that S1i and S2i have identical distri-

butions.

　　　Since our parametric specification imposes that S1i, S2i, and Si are normal random variables, 

from the reproductive property of normal distributions, we have S2i～N（µ−µ1, σ2−σ2
1）, where （µ, 

σ2） and （µ1, σ2
1） are the parameters for distributions of Si and S1i, respectively. Let （µ2, σ2

2） be the 

parameter vector for distributions of S2i. By the estimated parameters and the sample mean of co-

variates, we gain µ2=1.85 and σ 2
2=40.53 . Note that, since the mean of the signals for item 1 is 

µ1=7.66, E（S1i）>E（S2i） holds. This inequality seems intuitively plausible because the willingness to 

pay for the second item is usually less than that for the first item.

　　　The statement of Theorem 1 is the winner’s curse reduction effect, as proposed by 

Chakraborty （2002）. Namely, bi（s）≥b1i（s1）+b2i（s2）. For each fixed signal s=5, 10, 15, varying the 

value of the signal for item 1, s1, from 3.0 to s, we compute bi（s）−（b1i（s1）+b2i（s2））.

　　　Figures 5, 6, and 7 report the difference of the bidding function bi（s）−（b1i（s1）+b2i（s2）） for 
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fixed signals s=5, 10, 15, respectively. The shape of the graph with s=5 is not similar to that of the 

graphs with s=10, 15. When s=5, the difference decreases as the signal for item 1, s1, increases. On 

the other hand, when s=10 and 15, the difference decreases for s1∈（3.0, 8.0） and s1∈（3.0, 11.0） and 

it increases for s1>8.0 and s1>11.0, respectively. The values of bi（s）−（b1i（s1）+b2i（s2）） for s=5, 10, 

15 are similar, around $2.50.

　　　One may mistakenly conclude that Theorem 1 implies the revenue of bundling auctions is 

higher than that of separate auctions. Actually, Theorem 1 does not imply revenue ranking. In Theo-

Figure 5: Difference of the bidding function with s=5
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Figure 6: Difference of the bidding function with s=10
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rem 1, for any signal of bundling auctions, Si=s, the equation s=s1i+s2i must hold. When we compare 

the revenues, the equation s=s1i+s2i need not hold. The realizations of S1i and S2i are determined in-

dependently.

　　　The expected revenues are computed by the Monte Carlo simulation method. Using the esti-

mated parameters and the sample means of covariates, we draw the signals of bundling and separate 

auctions from the estimated distributions. We assume that the number of potential bidders is N=7. 

Then, the equilibrium bids for signals are computed via equation （1） and （2）. The winning bids are 

the second-highest bids for both bundling and separate auctions. The revenue difference is computed 

by the difference between the bundling auction’s winning bid and that of the separate auction. We 

iterate this procedure 5000 times.

　　　The density of revenue differences between bundling and separate auctions is shown in 

Figure 8. The shape of the density is symmetrical at point 0. Table 7 reports the summary statistics 

of revenues and revenue differences. In Table 7, “Mean” and “Stdev.” are the mean and the standard 

deviation of revenue differences, respectively. Similarly, “.25 quantile,” “Median,” and “.75 quantile” 

represent the first quartile, the second quartile, and the third quartile. The probability that the 

revenue of bundling auctions is higher than that of separate auctions is denoted by “PP.”

　　　According to Figure 8 and Table 7, the revenue of bundling auctions is higher than that of 

separate auctions with probability 0.53. The expected revenue difference is $0.37. Therefore, sellers 

can gain an additional profit of $0.37 by using a bundle auction rather than two separate auctions. 

Since the average transaction price of bundled items （22-coin sets） is $8.98, we find that the value of 

additional gains are not negligible. In the theoretical literature, Chakraborty （2002） discussed the 

Figure 7: Difference of the bidding function with s=15
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revenue ranking between the revenue of bundling auctions and separate auctions. He found that 

bundling auctions generate more expected revenue than do separate auctions when the number of 

bidders is sufficiently small. According to Tables 1 and 2, the number of participants at most 7. 

Therefore, our empirical example does not contradicts the result of Chakraborty （2002）.

6　Conclusions

　　　In this paper, we focused on bundling auctions in online auction markets. In online auction 

markets （e.g., eBay and Yahoo!）, sellers often sell two or more items in bundling auctions. Converse-

ly, other sellers sell the same items separately. We propose an estimation procedure for bundling 

auction models within the pure common value paradigm.

　　　Our empirical example is eBay mint coin set auctions in 2014. In our data set, there are two 

kinds of coin sets: 11-coin sets and 22-coin sets. We regard the 11-coin sets as the separate item and 

the 22-coin set as the bundled item. We also conducted some counterfactual simulations using the es-

timated parameters. We computed the winner’s curse reduction effect following Chakraborty （2002） 

Mean Stdev. .25 quantile Median .75 quantile PP

Revenue （bundle） 8.67 3.12 　6.61 8.85 10.88 ―
Revenue （item 1） 6.99 2.48 　5.39 7.10  8.73 ―
Revenue （item 2） 1.32 1.90 　0.09 1.41  2.67 ―
Revenue difference 0.37 4.47 −2.60 0.38  3.40 0.53

Table 7: Summary statistics of revenue and revenue differences

Figure 8: Density of revenue difference between bundling auctions and separate auctions
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precedent and compared the revenue of bundling auctions and separate auctions. We found that the 

value of the winner’s curse reduction effect is about $2.5. For revenue comparison, we found that the 

expected revenue in the bundling auctions is higher than that in the separate auctions by $0.37. 

Since the average transaction price of bundled items （22-coin sets） is $8.98, the value of additional 

gains are not negligible.

　　　There are some avenues for future research in this paper. For one, we ignored the endoge-

nous entry of bidders. In general, bidders will decide endogenously to participate, whether in bun-

dling auctions or separate auctions. Analogously, we also ignored the seller’s incentive to decide 

which item （the bundled item or separate items） to sell. The seller’s decision as to which item to sell 

will depend on the revenue ranking between bundling auctions and separate auctions.
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Notes

1 　This specification is the special case of Chakraborty （2002） and has been used in several papers. Example 
are Goeree and Offerman （2002） for auctions within common value and private values paradigm and Shahriar 
（2008） and Shahriar and Wooders （2011） for auctions with buy prices model.

2 　We omit subscript k=1 for the coefficient parameters α and β.
3 　Chakraborty （2002） also discussed the expected revenues of both bundling auctions and separate auctions. 
Under the regularity conditions that are satisfied in our parametric specifications （i.e., normally distributed sig-
nals）, He found that revenue ranking between the revenue of bundling auctions and separate auctions depends 
on the number of potential bidders, N. He found that bundling auctions generate more expected revenue than 
do separate auctions for all N<N*, where N* is a sufficiently small number.
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