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Abstract

　　　This study measures the realized jump beta of sector portfolios constructed from Japanese 
high-frequency intraday data to assess the dynamics in jump beta aggregated over fixed intervals 
of time. When we test the null hypothesis that jump beta remains constant over time, the result 
strongly rejects the constancy of annually aggregated jump beta, but does not frequently reject 
that of monthly jump beta. Given the worldwide evidence of fractional integration in realized vari-
ance and covariance, the estimation result under the assumption of a pure fractional noise process 
of the monthly jump beta indicates a smaller average degree of integration, namely ARFIMA（0, 0.2, 
0）, than that of a total realized beta largely including diffusive risk component of asset returns. 
Moreover, the jump beta might be naturally modeled as a stationary I（0） process.

JEL Classification Numbers: G12, G15.
Keywords: Jump beta, Market jump variation, Jump covariation, High-frequency data.

1．Introduction

　　　In the simple one-factor capital asset pricing model （CAPM）, the systematic risk factor load-

ing is market beta determined by the covariance of asset and market portfolio returns. A key ques-

tion in this framework is whether or not market beta is constant over fixed intervals of time. From 

theoretical and empirical perspectives, studies such as Hansen and Richard （1987）, Ferson et al. 

（1987） and Jagannathan and Wang （1996） suggest that market beta is likely to vary with condition-
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ing variables. Within the framework of realized variances and covariances based on the high-frequen-

cy intraday data first popularized by Andersen and Bollerslev （1998）, Andersen et al. （2006） analyze 

the dynamics of realized market beta, or equivalently nonparametric period-by-period beta, defined 

as the realization of the ratio of integrated asset and market covariation to integrated market varia-

tion of the underlying price processes.

　　　The development in financial econometrics literature based on the high-frequency data sheds 

light on large jumps of asset and market return processes （e.g., Andersen et al. 2007; Barndorff-

Nielsen and Shephard 2004; Huang and Tauchen 2005; Lee and Mykland 2008）. A classical asset pric-

ing model assumes that jump risk for individual stock is non-systematic, so that the corresponding 

jump beta is zero. However, the observed cross-correlations for extreme asset returns in the financial 

market imply that the jump beta is not negligible and the market beta could be decomposed into 

systematic diffusive and jump risk components. The presence of substantial jump risks is also sup-

ported by the existing positive price against the expected variation of the underlying asset jump re-

turn in derivatives markets; in fact, the corresponding option-implied downside jump variation could 

be a significant predictor for future equity risk premium （e.g., Pan 2002; Eraker 2004; Bollerslev and 

Todorov 2011; Bollerslev et al. 2015; Andersen et al. 2020）.

　　　To my knowledge, there is limited research on jump beta based on high-frequency data. 

Todorov and Bollerslev （2010） propose an estimator of jump CAPM beta based on higher-order 

power variations. They find that the estimates differ statistically from diffusive CAPM beta for some 

of the U.S. stocks. Mancini and Gobbi （2012） propose an estimator of jump beta based on the ratio of 

truncated jump covariation to jump variation. Li et al. （2017） propose a test statistic for time-varying 

jump beta. The empirical evidence has been provided only in the U.S. financial market such as by 

Bollerslev et al. （2016） and Alexeev et al. （2016, 2017）. For instance, Bollerslev et al. （2016） show 

that the jump betas of 1,000 U.S. stocks entail significant risk premiums and remain significant even 

after controlling for firm characteristics and other explanatory variables. Overall, they suggest the 

usefulness of separately considering the two different types of components in market beta.

　　　The main purpose of our study is to understand the dynamics of the realized jump beta con-

structed based on the high-frequency intraday data and to provide new evidence from the Japanese 

financial market. First, we investigate how much sensitivity of major sector portfolios is captured by 

the jump beta at the moment when large jumps happen to the market portfolio. To measure the 

jump beta, we detect the 10-minute intraday market jump returns based on the truncation method 

first popularized by Mancini （2001, 2009）, and construct the ratio of jump covariation between mar-

ket jump and corresponding sector portfolio returns to market jump variation aggregated over fixed 

intervals of time. We find that annually aggregated jump beta obtained by pooling the 10 -minute 

jump returns every year is nonzero and that the dynamics is very smooth, but allowing for the jump 
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beta to change on monthly frequency captures more clearly the large changes in the sensitivity of 

sector portfolios to the market jumps.

　　　We then examine the time-varying jump beta over years and months using the test statistics 

of Li et al. （2017）. If the test statistic rejects the null hypothesis that jump beta remains constant 

over fixed intervals of time, we investigate the time-series property of jump beta, such as the degree 

of persistence. The test shows that the constancy of annually aggregated jump beta is always reject-

ed at the 1% significance level for all sector portfolios used in our study, while that of monthly aggre-

gated jump beta is not rejected for about half of the monthly samples. This result suggests that it 

would be more reasonable to investigate the time-series property of realized jump betas at a month-

ly frequency. Given the worldwide evidence of fractional integration in realized variance and covari-

ances, we apply a pure fractional noise process to monthly jump betas. The estimation result shows 

a small average degree of fractional integration such that the estimates of the long-memory parame-

ter is around 0.2. It is less persistent than the total realized betas and covariances, typically with the 

degree of integration around 0.4 in our samples. Furthermore, we fit the autoregressive integrated 

moving average （ARIMA） process to the realized jump beta, and the estimation result suggests that 

the realized jump beta might be naturally modeled as a stationary I（0） process.

　　　The remainder of this article is organized as follows. Section 2 provides a brief explanation of 

the procedure for calculating realized jump beta used throughout the study. Section 3 describes the 

data that we use in the empirical analysis and presents the empirical results for time-varying real-

ized jump beta. Section 4 concludes.

2．Measuring Realized Jump Beta

　　　Realized jump beta is defined as the realization of covariation between market jump return 

and the contemporaneous asset return divided by market jump return variation. To calculate the 

quantity, we will first detect the high-frequency market jump returns based on the truncation meth-

od proposed in Mancini （2001, 2009）. For the simplicity of notation, the daily interval ［t－1, t］ is di-

vided into non-trading ［t－1 , t－1+π］ and trading ［t－1+π, t］ intervals. We then define equally-

spaced high-frequency market returns as ri,t＝ft－1+π+iΔm－ft－1+π+（i－1）Δm for i＝1, . . . , m, t＝1, . . . 

, T, where f., m, and T are the log market price, the number of intraday market returns in each day, 

and the number of days, respectively. The interval length of market returns is denoted as 

（1－π）
m

Δm＝ ＝
（1－π）T

mT
（1－π）T

n＝ ＝Δn， where n is the number of market returns within the fixed 

time interval ［0, T］. We examine high-frequency data on equally spaced series at 10-minute intervals 

of returns in our calculation of the realized jump beta.
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　　　We consider the time-varying threshold value for the identification of market jump returns as 

introduced in Bollerslev and Todorov （2011）, Todorov and Tauchen （2012）, Andersen et al. （2015）, 

and Li et al. （2017）. The idea is that if an absolute value of intraday market return exceeds the 

threshold value, the corresponding market jump return is identified. The computation of the time-

varying threshold level considers the intraday periodicity in the return volatility because the deter-

ministic diurnal pattern in volatility is well observed in financial markets. One of the statistics mea-

suring the periodicity is the time-of-day （TOD） factor,

 ⑴

Theoretically, ω∈（0, 0.5） will work, and we fix ω＝0.49 as with the previous studies. The constant 

truncation level ν is calculated as 3×B―V― 1/2, where B―V― is the sample average of open-to-close bipow-

er variation measure BVt
open over ［0, T］ proposed in Barndorff-Nielsen and Shephard （2004）, that is, 

∑t＝1
T

BV＝1/T BVt
open．––  The numerator and denominator in ⑴ estimate the continuous or diffusive 

return variation for each i-th intraday interval over ［0, T］ and the total continuous return variation, 

respectively. NOIi is expressed as ∑t＝1
T

∑t＝1
T

∑j＝1
m

 1｛|ri，t|≤ν–Δωm｝

 1｛|rj，t|≤ν–Δωm｝ and adjusts the different number of 

continuous returns for each interval i.

　　　We use the time-varying threshold value, denoted as νi,t, which depends on the intraday peri-

odicity and time-varying volatility across days,

 ⑵

where min（RVt
open, BVt

open） is a function that selects the smaller value from open-to-close realized 

variance and bipower variation measure. π^  is the ratio of close-to-open return variation on close-to-

close return variation over ［0, T］ expressed as ．
∑t＝1

T

∑t＝1
T

（ ft－1＋π－ft－1）2

（ ft－ft－1）2
 In the Japanese stock market, 

the numerator of π^  is calculated as the summation of squared overnight and lunchtime returns over 

［0, T］. The constant scaling factor c is set as 4 in our calculation. The time-varying threshold value 

νi,t increases as daily market return volatility increases. Therefore, an absolute value of intraday 

market returns ｜ri,t｜ needs to exceed the large threshold value to be judged as jump. The collection 

of high-frequency market jump returns is denoted as （Δj
nZ）j∈Ln（D）, where Ln（D） denotes indices of 

TODi＝NOIi×
r2

i，t 1｛|ri，t|≤ν–Δωm｝∑t＝1
T

∑t＝1
T ∑j＝1

m r2
j，t 1｛|rj，t|≤ν–Δωm｝

， for i＝1， …， m． 

min（RVt
open， BVt

open）
1－π̂ ×TODi×Δm

ω，νi，t＝c×
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intervals that contain the market jumps in the region D. Let （Δj
nY）j∈Ln（D） be a collection of contem-

poraneous returns of an asset over the times of market jumps and Δj
nX be the 2 by 1 vector of Δj

nY 

and Δj
nZ, Li et al. （2017） introduce a simple sample analogue estimator of jump covariation matrix 

Qn（D）,

 ⑶

Finally, realized jump beta can be calculated as the ratio of realized jump covariation estimator be-

tween Δi
nY and Δi

nZ to realized market jump variation estimator,

 ⑷

We should note that the estimator in ⑷ corresponds to the no weighting version of the optimally 

weighted estimator of the jump beta proposed by Li et al. （2017）. The calculation of weights requires 

the pre-jump and the post-jump spot covariance matrices. We do not use the weighted estimator in 

our calculation of jump beta because of the shortage of the corresponding pre- and post-jump contin-

uous returns while calculating the weight for the jump return identified at the start- and end-time 

intervals in open-to-close markets.

3．Empirical Results

3-1．Data

　　　In our empirical analysis, we construct jump betas of four sector portfolios for electrical appli-

ances （EA）, transportation equipment （TE）, banks （BA） and real estate investment trust （RE）. We 

proxy market portfolio in Japan with Tokyo stock price index （TOPIX） which is a value-weighted 

index based on all domestic common stocks in the first section of the Tokyo Stock Exchange. To 

avoid a market microstructure effect due to ultra high-frequency return series, which is induced by 

various market frictions such as the discreteness of price changes and bid-ask bounces, inter alia, we 

rely on the 10-minute high-frequency returns of the sector and market portfolios obtained by Nikkei 

NEEDS-TICK data from January 2012 to December 2016. The equity market timings are 9:00-11:30 

and 12:30-15:00 in our sample period, and thus the number of intraday intervals in a day is m＝30.

　　　Figure 1 plots annually and monthly aggregated realized jump betas of the four sector portfo-

lios. The annually estimates in solid lines, which are obtained by pooling the 10-minute market jump 

and corresponding sector portfolio returns every year, are very smooth. The jump betas over annual 

frequencies tend to be a little higher than 1 for EA, TE, and BA, but much lower than 1 for RE. The 

monthly estimates obtained by pooling the 10-minute jump returns every month are reported in dot-

＝ Δj
nXΔj

nX T.Qn（D）＝
QYY，n（D）  QYZ，n（D）

QZY，n（D）  QZZ，n（D）
∑

j∈Ln（D）（ ）
．

QYZ，n（D）
QZZ，n（D）

βn
J＝
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ted lines. Allowing for jump beta to change monthly, we can capture noisier and higher fluctuations 

of jump betas relative to annual jump betas. The estimates for EA, TE, and BA occasionally take be-

low one, and negative estimates for RE occur very rarely.

　　　As noted in Li et al. （2017）, the realized jump beta is consistent with a slope coefficient when 

we conduct linear regression without a constant term of sector portfolio returns on market jump re-

turns aggregated over fixed intervals of time. To illustrate the jump regressions, Figure 2 displays 

the scatter plots of 10-minute market jumps and the respective sector portfolio returns, together 

with their linear fits. We find that the monthly aggregated jump regression provides a reasonably 

better fit relative to the annually aggregated jump regression. The results motivate us to explore the 

test of constant jump beta over different frequencies.

3-2．Test for Constant Jump Betas

　　　We apply a test statistic for constant jump betas proposed by Li et al. （2017）. The test is 

based on the fact that the constant linear jump regression model over fixed intervals of time is 

equivalent to the singularity of the realized jump covariation matrix. The null hypothesis that the 

jump beta remains constant over time is rejected when the determinant of a sample analogue esti-

mator of the jump covariation matrix is larger than a critical value,

 ⑸

C V αn is the critical value at the significant level α∈（0, 1）. The test statistics can be also written in 

terms of realized jump correlation,

Δn
－1det［Qn（D）］>C V αn.

Figure 1: Time-series plot of annually and monthly aggregated realized jump betas

Note:  The solid and dotted lines represent the estimates of annually and 
monthly aggregated realized jump betas of four sector portfolios con-
structed from the 10-minute high-frequency returns of market jump and 
the contemporaneous sector portfolios from 2012 to 2016.
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 ⑹

where ρn（D） is the realized jump correlation expressed as ．
QYZ，n（D）

QYY，n（D）QZZ，n（D）
 The computation 

of the critical value C V αn is based on Monte Carlo simulations because the null asymptotic distribu-

tion is nonstandard, and its conditional （1－α） quantiles cannot be expressed in closed form. We sim-

ulate a large number of Monte Carlo simulations to calculate the （1－α） quantiles of copies of the 

limiting variable using pre-jump and post-jump spot covariance matrices, realized jump beta, and 

uniformly distributed on the unit interval and bivariate standard normal variables （See Algorithm 1 

and Theorem 1 in Li et al. （2017） for more details）. Then, we compute the p-value for inference.

　　　Table 1 reports annually aggregated realized jump betas of four sector portfolios and the p-

values of the test statistics ⑸ or ⑹ in parentheses. We also report the numbers of 10-minute market 

（TOPIX） jump returns in Table 1, which range from 107 in 2012 to 248 in 2016. In 2012 and 2016, 

the jump betas deviate upward from 1 for the EA, TE, and BA sectors and deviate downward from 

1 for the RE sector. Despite the apparent variation of year-by-year jump betas, the null hypothesis 

that annually aggregated jump beta remains constant is strongly rejected in all cases. The result 

shows the deviations from linearity in the annually aggregated jump regressions and the possibility 

that the jump beta changes over a shorter period of time. This might be common with the implica-

tions of the conditional capital asset pricing models. As opposed to the annual basis, we test the con-

stancy of monthly aggregated jump betas. Figure 3 plots time-series of p-values of the test statistics 

，
ΔnCV n

α

QZZ，n（D）QYY，n（D）
1－ρn

2（D）＞

Figure 2: An illustration of linear jump regressions with scatter plots and linear fits

Note:  The x-and y-axes represent the 10-minute returns of market jump and 
the contemporaneous electric appliance sector portfolio in 2012 . The 
first and the other panels show linear jump regressions over a year 
and every month, respectively.
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⑸ or ⑹ from January 2012 to December 2016 （60 months）, where the circle （cross） symbol means 

that the p-values exceed （fall below） the 1% significance level. We find that the null hypothesis that 

monthly jump beta remains constant is not rejected even at the 1% significance level for about half 

of the monthly samples. These results suggest the linearity of the jump regression model over peri-

ods of months and the stability of monthly realized jump beta.

3-3．Time-Series Property of Monthly Jump Betas

　　　We will investigate the time-series property of monthly aggregated jump beta based on the 

Table 1: Annually aggregated jump beta and test for the constancy

2012 2013 2014 2015 2016

EA-y 1.19 1.05 1.10 1.04 1.11
p-value （0.000） （0.000） （0.000） （0.002） （0.000）
TE-y 1.19 1.15 1.21 0.99 1.25
p-value （0.000） （0.000） （0.000） （0.002） （0.000）
BA-y 1.27 1.06 1.06 1.12 1.37
p-value （0.000） （0.000） （0.000） （0.000） （0.000）
RE-y 0.14 0.53 0.47 0.30 0.26
p-value （0.000） （0.000） （0.000） （0.000） （0.000）
Number of 10-minute jump returns of TOPIX within a year

107 207 150 160 248

Note:  The table reports the estimates of annual jump betas for four sector portfolios and the p-values for the constancy test 
of the jump beta in parenthesis. The last row reports the number of 10-minute market （TOPIX） jump returns every 
year.

Figure 3: P-values for the constancy test of monthly aggregated jump beta

Note:  The circle and cross symbols represent p-values for the null hypothesis of 
the constant monthly aggregated jump beta, which are more than and 
less than 0.01 , respectively. The sample period covers the period from 
January 2012 to December 2016.
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results in the previous subsection. Rows two to five in Table 2 report the augmented Dickey-Fuller 

unit root test with intercept and different augmentation lags up to four. The test rejects the null hy-

pothesis of unit root for the jump betas of EA, TE, and RE sectors with all augmentation lags and for 

BA sector with the first augmentation lag. We also represent the Ljung-Box portmanteau test statis-

tics for up to 12th-order autocorrelation in the last row of Table 2. The null hypothesis of no autocor-

relation up to 12 lags is rejected at 5 or 10% significance levels only for jump betas in two out of four 

sector portfolios. In fact, the values of LB（12） seem to be quite low, compared with the stylized fact 

of highly significant asset return volatility clustering. This result indicates that the realized jump be-

tas are totally less persistent. This is confirmed by the quite low and moderately declining sample 

autocorrelation and partial autocorrelations reported in Figure 4.

　　　Many authors suggest that asset return volatilities are well-described by a fractional noise 

process with the degree of fractional integration such that the long-memory parameter d is around 

Figure 4: Sample autocorrelation and partial autocorrelation of monthly jump beta

Note:  The black and gray bars represent sample autocorrelations and partial 
autocorrelations, respectively, for monthly jump betas of four sector 
portfolios.
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Table 2: Test for the dynamics of monthly aggregated jump beta

EA TE BA RE

ADF（1） －4.28＊＊＊  －4.13＊＊＊ －2.96＊＊ －4.76＊＊＊

ADF（2） －3.58＊＊＊  －2.88＊　　 －2.26 －3.63＊＊＊

ADF（3） －3.58＊＊＊  －3.00＊＊　 －2.28 －3.67＊＊＊

ADF（4） －2.96＊＊　  －3.09＊＊　 －1.76 －2.90＊　　

LB（12） 5.74 　21.91＊＊　 19.73＊ 10.48

Note:  ADF（i） denotes the augmented Dickey-Fuller unit root test with intercept and with i augmentation lags. LB（12） de-
notes the Ljung-Box portmanteau statistic for up to the 12th-order autocorrelation. The superscripts ＊＊＊ , ＊＊ , and ＊ in-
dicate significance at the 1, 5, and 10% levels, respectively.
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0.4 , indicated by Andersen et al. （2001） for spot exchange rate markets and by Andersen et al. 

（2003） for the U.S. equity market, and around 0.5, indicated by Ubukata and Watanabe （2014） for 

the Japanese equity market. Andersen et al. （2006） propose the total realized beta including system-

atic diffusive and jump risk components, which is defined as realized covariance between asset and 

market returns divided by realized market variance, and find that the total realized betas are less 

persistent in the U.S. equity market. Despite the empirical evidence of realized covariances and beta, 

very little research exists on the presence of long-memory in realized jump beta. We apply the sim-

plest autoregressive fractionally integrated moving average model, ARFIMA（0, d, 0）, for the time-se-

ries of monthly aggregated jump beta to focus on the long-memory parameter d. Table 3 shows the 

estimation results of the ARFIMA（0, d, 0） model for jump betas of the four sector portfolios. The esti-

mates of the long-memory parameter are lower than 0.4 and the average degree of fractional integra-

tion is 0.2. The results indicate very weak long-memory property in the monthly aggregated jump 

beta series. We will compare the jump beta and covariation with the total beta and covariation in the 

next subsection.

　　　As motivated by the empirical finding of low-order fractional integration, we conduct a test of 

short or long-range dependence in Table 4 , which reports the classical Hurst-Mandelbrot rescaled 

range statistics with q＝0 and Lo’s （1991） modified rescaled range statistics with q≥1. Judging from 

Table 3: Estimation result of ARFIMA（0, d, 0） model for monthly aggregated jump beta

EA TE BA RE Mean

d 0.13 0.33 0.27 0.08 0.20
s.e. 0.00 0.00 0.00 0.00

Note:  The parameter d and s.e. represent the degree of fractional integration and standard error of the estimates. The last 
column reports the average of the parameter estimates for four sector portfolios.

Table 4: Rescaled range test statistics of monthly aggregated jump beta

EA TE BA RE

Vq=0 1.659 2.206＊＊ 2.278＊＊ 1.396
Vq=1 1.541 1.822＊＊ 2.002＊＊ 1.310
Vq=2 1.453 1.677＊　 1.797＊＊ 1.268
Vq=3 1.402 1.575 1.657＊　 1.225
Vq=4 1.394 1.504 1.578 1.227
Vq=5 1.383 1.469 1.516 1.220
Vq=6 1.383 1.442 1.475 1.243
ACF（1） 0.159 0.465 0.295 0.135
q＊ 2 5 3 1

Note:  Vq=0 and Vq≥1 are the classical and modified rescaled range statistics. The superscripts ＊＊ and ＊ indicate significance 
at the 5 and 10% levels. The 5 and 10% critical values are 1.747 and 1.620, respectively. q＊ is the lag chosen by An-
drews’ （1991） data-dependent formula.
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the statistics with the optimal number of lags q＊ chosen by Andrews’ （1991） data-dependent formu-

la, the null hypothesis of no long-range dependence in monthly realized jump betas of EA, TE, and 

RE sector portfolios is not rejected even at the 10% significance level. In light of the result that the 

jump beta does not exhibit long-range dependence, we are interested in the alternative where the 

realized jump betas are I（0） processes. To explore this possibility, we fit the ARIMA model to the 

realized jump betas, with lag selected by the Akaike information criterion （AIC）. Table 5 reports 

the ARIMA model selection and estimation results for the monthly jump beta in each sector portfo-

lio. The selected models are ARIMA（0, 0, 0） for EA and RE, ARIMA（1, 0, 0） for TE, and ARIMA（2, 0, 0） 

for BA. The estimation results suggest that the time series of jump beta might be within the context 

of stationary I（0） processes.

3-4．Comparison between Monthly Jump Betas and Total Betas

　　　In this subsection, we compare the time-series properties of the realized jump betas and the 

total realized beta before being decomposed into systematic diffusive and jump risk components. The 

sample correlation coefficients between the two betas of four sector portfolios are around 0.8. Despite 

the relatively high correlation, the time-series plot of monthly aggregated jump and total betas re-

ported in Figure 5 reveals the difference between the two more clearly. In particular, the jump risk 

component of the market beta （dotted line） looks more volatile than the total beta. Furthermore, the 

more prominent difference is the degrees of fractional integration. Table 6 reports the estimation re-

sults of the long-memory parameter d in the ARFIMA（0, d, 0） model for monthly jump beta （second 

row）, market jump variation and covariation for sector portfolios （third row）, and the total ones 

（fourth and fifth rows）. We find that the estimates of the long-memory parameter d for total beta 

and （co）variation are on average 0 . 43 and 0 . 36 larger than those of jump beta and （co）variation, 

which are 0.20 and 0.24, respectively. The results suggest that the total betas and （co）variation are 

highly persistent relative to the jump betas and （co）variation. Thus, we conclude that separately 

Table 5: ARIMA model selection and estimation results

Constant AR（1） AR（2） AIC Inverted Roots

EA
1.08

（0.02）
－53.45

TE
1.13

（0.04）
0.46

（0.11）
－28.64

BA
1.22

（0.06）
0.23

（0.13）
0.28

（0.13）
　12.98 0.66 －0.43

RE
0.25

（0.04）
　22.76

Note:  The table reports estimation results of the fitted ARIMA model selected by AIC for monthly jump beta in each sector 
portfolio. The sample covers the period from January 2012 to December 2016 for a total 60 observations.
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considering the jump risk component in the market beta is meaningful to capture the statistical dif-

ference between the two betas.

4．Conclusion

　　　Several recent studies investigate the fact that the premia associated with jump risks some-

times appears to be different from the premia associated with continuous risks. This study measures 

market jump risk factor loading determined by the covariance between market jump and contempo-

raneous asset high-frequency returns. The estimates show that annually aggregated jump beta is 

smooth over time, while monthly aggregated jump beta captures large changes in the sensitivity of 

sector portfolios to the market jumps. This study also investigates the time-series properties of real-

ized jump beta, such as the constancy over fixed intervals of time and the degree of fractional inte-

gration. We have new evidence in the Japanese financial market that in contrast to monthly aggre-

Figure 5: Time-series plot of monthly jump and total betas

Note:  The dotted and solid lines represent monthly jump and total betas from 
January 2012 to December 2016, respectively.
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Table 6: The degree of fractional integration for monthly jump and total beta and covariation

EA TE BA RE Market Mean Median

Jump beta 0.13 0.33 0.27 0.08 ― 0.20 0.20
Jump covariation 0.31 0.31 0.26 0.02 0.31 0.24 0.31
Total beta 0.44 0.45 0.46 0.36 ― 0.43 0.44
Total covariation 0.35 0.36 0.36 0.36 0.37 0.36 0.36

Note:  This table reports the estimates of long-memory parameter d in ARFIMA（0, d, 0） model for jump beta （second row）, 
market jump variation and covariation for sector portfolios （third row）, and the total ones （fourth and fifth rows）, re-
spectively. The last two columns report the average and median of the estimated d in each row.
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gated jump beta, the constancy of annual jump beta is always rejected, and the time-varying 

monthly jump beta has a smaller degree of fractional integration and less persistence compared with 

the total realized beta largely including the continuous risk component of asset returns. We note that 

the empirical analysis in this study is limited to the statistical tests and estimation of time-series 

models for jump beta. Therefore, it would be worthwhile to investigate whether or not separating 

the continuous and discontinuous betas also has important implications for practical portfolio and risk 

management.
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