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1．はじめに

　本稿は浜口（2025）の続編である．ここでは Cooper and Frieze（2003）の考え方に基づき，スケー

ルフリーグラフを生成する preferential attachment，すなわち次数の大きさに応じた頂点の選択方法と

一様ランダムな頂点の選択方法の 2 つを確率的に併せ持つような，Cooper and Frieze（2003）の理論

を部分的に変更したモデルを対象にする．そして，生成されるグラフの辺の本数に関する性質を定理 1，

定理 2 および定理 3 として導く．

2．本稿のモデルの定義

　スケールフリーグラフを生成する preferential attachment のモデル化は次のとおりである．既存の

グラフ G に新しい頂点を 1 個ずつ加えるとき，その頂点から m 本の辺を頂点の次数の大きさに応じて

確率的にグラフ G に接続する．このとき，多重辺とループも認めるものとする．以下，具体的に m の

大きさで場合分けして考える．

　m＝1 の場合について，上記のことを定式化すると以下のようになる．既存のグラフ G に追加して

いく頂点列を v1，v2，…と固定し，グラフ G における頂点 v の次数を dG（v）と記す（以下，d（v）と略記）．

そこでランダムグラフのプロセス（G1t）t≥1 を次のように帰納的に定義すると，｛ vi：1 ≤ i ≤ t ｝上のグラ

フ G1t が構成される．すなわち，まず 1 個の頂点と 1 つのループを持つグラフ G11 から出発する．そして，

G1t－1 まで構成されたとき，次に追加する頂点 vt と G1t－1 上の任意の頂点 u を 1 本の辺で結ぶ．このと

き，G1t－1 におけるすべての頂点の次数和は 2（t－1）なので，t において確率変数 u は次の式を満たす．

P（u＝vs）＝dG1t－1（vs）/2（t－1）　　1≤ s≤ t－1．
これは，Barabási and Albert（1999）のモデルを定式化したものであるが，本稿では，Cooper and 

Frieze（2003）と同様に，preferential attachment においては，追加する頂点 vt が次数の大きさに従っ
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て G1t－1 内の頂点をランダムに選択するものとし（ただし，vt 自身を選択することはない），このとき

頂点の内次数と外次数の区別はしないものとする．すなわち，生成されるグラフは無向グラフである．

また，m＞1 の場合については，追加する頂点 vt から m 本の辺が一度に G1t－1 に接続される．よって，

プロセス（Gm
t）については，プロセス（G1mt）において，最初の頂点から m 個の頂点ごとに統合して 1

個の頂点にすれば（Gm
t）が得られることになる．したがって，本稿では mt を t と置き換え，追加する

頂点から 1 本の辺が既存のグラフに接続される G1t グラフを扱うものとする．また簡単のため，頂点列

v1，v2，…を添え字のみで表し，1，2，…と表記することもある．よって G1t は，［ t ］⊆｛ 1，2，…，mn ｝上の

ランダムグラフとなる．また，追加する頂点 j が接続される既存のグラフ内の頂点を ɡj として表す．

　本稿では，Cooper and Frieze（2003）のモデルを簡略化して以下のように考えるものとする．なお，

できる限り Cooper and Frieze（2003）にある記号を用いるようにする．既存の生成グラフにおいては，

頂点同士の接続は起こらないものとする．よって，Cooper and Frieze（2003）において，α＝0，qj＝
0（j ≥ 1），すなわち，j1＝0 である．そして，Cooper and Frieze（2003）と同様に，追加する頂点は確

率 βで生成グラフの 1 個の頂点を一様ランダムに選択，または，確率 1－βで生成グラフの 1 個の頂点

を次数の大きさに従いランダムに選択する（すなわち，preferential attachment）ものとする（ただし，

0 ≤ β＜1）．この点が当モデルの本質的な特徴である．

3．モデルの性質

　さて，以下の補題では，グラフの構成プロセス（G1t）を考えるので，G1t は確率変数である．また，

グラフ G1t における頂点 i の次数を dt，i＝dG1t（i）とし，その期待値を E（dt，i）とする．なお，事象 A が

起こるとき 1，起こらないときに 0 の値をとる指示関数（indicator function）を IA で表す．まず，以

降の証明で用いる不等式に関する補題 1 を示す．

補題 1

　a は 0＜a ≤ 1 を満たす定数であり，i と t は t ≥ i＋1 ≥ 2 を満たす整数とする．このとき，以下の不

等式が成り立つ．

≤ ≤（2e1/2）a
a

s－1）1＋（1
2e1/2）

a（ t
i ）

a（ t
i ）

a（
t

s＝i＋1
Π ．

証明

　まず， ＝exp log
a

s－1）1＋（
t

s＝i＋1
Π a

s－1）1＋（
t

s＝i＋1
Π（ ）なので，log

a
s－1）1＋（

t

s＝i＋1
Π の大きさを評価す

ると，以下のようになる．

　i ≥ 2 のとき，

a
x）

a
s－1）1＋（

t

s＝i＋1
Πdx≤ log dx≤∫i

t
 log 1＋（ a

x）∫t－1
i－1 log 1＋（ ．

　i＝1 のとき，下限の評価は上と同じで，上限は以下となる．
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a
s－1）1＋（

t

s＝i＋1
Πlog ≤ log（1＋a）＋

a
x）∫i

t－1
log 1＋（ dx．

よって，これらの不等式に等式
x＋a

e ）x＋a
＋C∫log（x＋a）dx＝log（ を適用することにより，主張の

不等式を得る．� □

　なお以下の補題 2 では，証明の過程において t＝i の場合も含めるが， ＝1
a

s－1）1＋（
t

s＝i＋1
Π とすれば，

上の不等式を満たすので，このように考えるものとする．

　さて補題 1 を用いて，Bollobás and Riordan（2004）の定理を参考に（この論文では，β＝0 の場合

を扱っている），頂点の次数の大きさの期待値と分散，および 2 頂点間に辺が存在する確率の大きさを

評価する次の補題を提示する．なお，事象 A かつ B が成り立つ確率を P（A，B）として表すものとする．

補題 2

　βは 0 ≤ β＜1 を満たす任意の定数とする．

（a）ある正の定数 c1，c2，c3，c4 に対して，dt，i の期待値 E（dt，i）と分散 V（dt，i）に関する以下の不等式

が成り立つ．

≤ E（dt，i）≤ c2c1
t
i ）
（1－β）/2（ t

i ）
（1－β）/2（ ．

≤ V（dt，i）≤ c4c3
t
i ）
1－β（ t

i ）
1－β（ ．

（b）1 ≤ i＜j のとき，ある正の定数 c5，c6 に対して，以下の式が成り立つ．

c5
1
i ）
（1－β）/2（ 1

j）
（1＋β）/2（ ≤ P（ɡi＝i）≤ c6

1
i ）
（1－β）/2（ 1

j）
（1＋β）/2（ ．

　1 ≤ i＜j＜k のとき，ある正の定数 c7，c8，c9，c10 に対して，以下の式が成り立つ．

c9
1
i ）

1－β（ 1
jk）

（1＋β）/2（ 1
i ）

1－β（ 1
jk）

（1＋β）/2（≤ P（ɡj＝i， ɡk＝i）≤ c10 ．

c7
1
i

1
j ）（1－β）/2（ 1

k）
（1＋β）/2（ 1

i
1
j ）（1－β）/2（ 1

k）
（1＋β）/2（≤ P（ɡj＝i， ɡk＝j）≤ c8 ．

　1 ≤ i＜j＜k＜r または 1 ≤ i＜k＜j＜r のとき，ある正の定数 c11，c12 に対して，以下の式が成り立つ．

c11
1
ik ）

（1－β）/2（ 1
jr）

（1＋β）/2（ 1
ik ）

（1－β）/2（ 1
jr）

（1＋β）/2（≤ P（ɡj＝i， ɡr＝k）≤ c12 ．

証明

（a）t ≥ 2 かつ 0 ≤ β＜1 のとき，グラフの構成プロセス（G1t）の定義（注：vt 自身を選択することはない）

から，以下となる．

dt－1，i
2（t－1）

（1－β）dt－1，i＋2β
2（t－1）

1
t－1P（ɡt＝i |G1t－1）＝（1－β） ＝＋β ．
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よって，ct，i＝（1－β）dt，i＋2βとすると，以下となる．

 
ct－1，i
2（t－1）P（ɡt＝i |G1t－1）＝ ．  （1）

この式の両辺の期待値をとることにより以下の式を得る．

 
E（ct－1，i）
2（t－1）P（ɡt＝i）＝ ．  （2）

また，t＞i に対して，dt，i＝dt－1，i＋Ⅰ｛ ɡt＝i ｝となるから（注：di，i＝1），

（1－β）dt，i＋2β＝（1－β）dt－1，i＋2β＋（1－β）Ⅰ｛ ɡt＝i ｝．

すなわち，ct，i＝ct－1，i＋（1－β）Ⅰ｛ ɡt＝i ｝となる．よって，式（1）から

．
ct－1，i
2（t－1）

1－β
2（t－1）E（ct，i |G1t－1）＝ct－1，i＋（1－β） ＝ ct－1，i1＋ ）（

両辺の期待値をとると，

  ．
1－β
2（t－1）E（ct，i）＝ E（ct－1，i）1＋ ）（   （3）

ここで，ci，i＝1＋βであるから，

．
t

s＝i＋1
ΠE（ct，i）＝（1＋β）

1－β
2（s－1）1＋ ）（

ただし，t＝i の場合，
t

s＝i＋1
Π 1－β

2（s－1）＝11＋ ）（ とし，E（ci，i）＝（1＋β）である（以降の議論でも，Π 記

号を用いるときは同様に考える）．よって補題 1 から以下を得る．

．≤ E（ct，i）≤（1＋β）（2e1/2）（1－β）/2（1＋β）
1
2e1/2（ t

i（）（1－β）/2 ）（1－β）/2 t
i（ ）（1－β）/2

このとき，
E（ct，i）
1－β

2β
1－βE（dt，i）＝ － であるから，補題 2（a）の最初の不等式を得る．次に，ct，i＝ct－1，i

＋（1－β）Ⅰ｛ ɡt＝i ｝および式（1）を用いれば以下となる．

E（ct，i
2 |G1t－1）＝E（ct－1，i＋（1－β）I｛ɡt＝i｝ |G1t－1））2（

ct－1，i
2（t－1）

ct－1，i
2（t－1）＝ct－1，i

2＋2（1－β）ct－1，i・ ＋（1－β）2

（1－β）2
2（t－1）

1－β
t－1＝ ct－1，i

2＋ ct－1，i1＋ ）（ ．

上式の期待値をとって以下となる．

．
1－β
t－1

（1－β）2
2（t－1）1＋ ）（E（ct，i

2）＝ E（ct－1，i
2）＋ E（ct－1，i）

式（3）の両辺に 1－βを掛けて上式の各辺に加えれば以下を得る．
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1－β
t－11＋ ）（ （ ）E（ct，i

2）＋（1－β）E（ct，i）＝ E（ct－1，i
2）＋（1－β）E（ct－1，i）．

ここで，ci，i＝1＋βだから，

 
t

s＝i＋1
Π 1－β

s－11＋ ）（E（ct，i
2）＋（1－β）E（ct，i）＝2（1＋β） ．  （4）

ただし，E（ci，i
2）＋（1－β）E（ci，i）＝2（1＋β）である．補題 1 を適用すれば，以下を得る．

≤ E（ct，i
2）＋（1－β）E（ct，i）≤2（1＋β）（2e1/2）1－β2（1＋β）

1
2e1/2（ t

i（）1－β ）1－β t
i（ ）1－β．

よって，V（dt，i）に関する不等式を得る．

（b）1 ≤ i＜j のとき，P（ɡj＝i）の大きさを評価する．式（2）において，t を j とすれば，以下となる．
E（cj－1，i）
2（ j－1）P（ɡj＝i）＝ ．

ここで，E（ct，i）に関する上述の不等式を適用すると，主張の最初の不等式を得る．

　次に，1 ≤ i＜j＜k のとき，P（ɡj＝i，ɡk＝i）の大きさを評価する．i＜j＜t に対して，式（1）および

ct，i＝ct－1，i＋（1－β）Ⅰ｛ ɡt＝i ｝を用いれば，以下となる．

E（ct，iI｛ɡj＝i｝|G1t－1）＝E（ct－1，iI｛ɡj＝i｝＋（1－β）I｛ɡt＝i｝I｛ɡj＝i｝|G1t－1）
＝ct－1，iI｛ɡj＝i｝＋（1－β）I｛ɡj＝i｝E（I｛ɡt＝i｝|G1t－1）

）（＝ （1－β）ct－1，i
2（t－1）ct－1，i＋ I｛ɡj＝i｝．

このとき，両辺の期待値をとって以下を得る．

 

1－β
2（t－1）E（ct－1，iI｛ɡj＝i｝）＝…1＋ ）（E（ct，iI｛ɡj＝i｝）＝

t

r＝j＋1
Π 1－β

2（r－1）E（cj，iI｛ɡj＝i｝）1＋ ）（＝ ．
  （5）

ところで，式（1）を利用すれば，

E（cj，iI｛ɡj＝i｝|G1j－1）＝E（cj－1，i＋（1－β）I｛ɡj＝i｝）I｛ɡj＝i｝|G1j－1）（

＝cj－1，i ＝（cj－1，i＋1－β）＋（1－β）
cj－1，i

2（ j－1）
cj－1，i

2（ j－1）
cj－1，i

2（ j－1）

となるので，両辺の期待値をとると，式（4）から以下を得る．
1

2（ j－1）E（cj，iI｛ɡj＝i｝）＝ （E（cj－1，i
2）＋（1－β）E（cj－1，i））

j－1

s＝i＋1
Π 1＋ ）（＝

1＋β
j－1

1－β
s－1 ．
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したがって，式（5）は以下となる．

  E（ct，iI｛ɡj＝i｝）＝
j－1

s＝i＋1
Π 1＋ ）（1＋β

j－1 Π1－β
s－1

t

r＝j＋1

1－β
2（r－1）1＋ ）（ ．  （6）

一方，i＜j＜k に対して，

P（ɡj＝i， ɡk＝i |G1
k－1）＝I｛ɡj＝i｝P（ɡk＝i |G1

k－1）＝I｛ɡj＝i｝
ck－1，i

2（k－1）

となる．このとき，両辺の期待値をとると，

P（ɡj＝i， ɡk＝i）＝
1

2（k－1）
E（ck－1，iI｛ɡj＝i｝）．

式（6）を利用すれば，以下を得る．

P（ɡj＝i， ɡk＝i）＝
1＋β

2（k－1）（ j－1）

j－1

s＝i＋1
Π 1＋ ）（ Π1－β

s－1

k－1

r＝j＋1

1－β
2（r－1）

1＋ ）（ ．

よって補題 1 から，以下となる．

≤ P（ɡj＝i， ɡk＝i）
1

2e1/2（ （）3（1－β）/2 ）（1－β）/21＋β
2（k－1）（ j－1）

k－1
j （ ）1－βj－1

i

≤ （ ）（1－β）/21＋β
2（k－1）（ j－1）

k－1
j （ ）1－βj－1

i
（2e1/2）3（1－β）/2 ．

ここで，j ≥ 2 および k ≥ 3 を考慮して近似すれば，主張の 2 番目の不等式を得る．同様に考えれば，主

張の 3 番目の不等式が得られる．

　次に，1 ≤ i＜j＜k＜r の場合，P（ɡj＝i，ɡr＝k）＝P（ɡj＝i）P（ɡr＝k）なので，最初の不等式から当

該の不等式が得られる．

　一方，1 ≤ i＜k＜j＜r の場合について考えると，まず以下の式を得る．

  ．P（ɡj＝i， ɡr＝k |G1
r－1）＝I｛ɡj＝i｝P（ɡr＝k |G1

r－1）＝I｛ɡj＝i｝
cr－1，k

2（r－1）
  （7）

このとき，i＜k＜j＜t に対して，前述の議論と同様に考えれば，以下となる．

．E（ct，kI｛ɡj＝i｝|G1t－1）＝ ct－1，kI｛ɡj＝i｝
1－β
2（t－1）1＋ ）（

よって，

  ．E（ct，kI｛ɡj＝i｝）＝
t

s＝j＋1
Π 1－β

2（s－1）・E（cj，kI｛ɡj＝i｝）1＋ ）（   （8）

ここで，

E（cj，kI｛ɡj＝i｝|G1j－1）＝E（cj－1，k＋（1－β）I｛ɡj＝k｝）I｛ɡj＝i｝|G1j－1）（
＝cj－1，k E（I｛ɡj＝i｝|G1j－1）＋（1－β）E（I｛ɡj＝k｝I｛ɡj＝i｝|G1j－1）
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cj－1，k cj－1，i

2（ j－1）＝ ．

最後の等号は，P（ɡj＝k，ɡj＝i）＝0 による．よって，以下を得る．

 
E（cj－1，k cj－1，i）
2（ j－1）E（cj，kI｛ɡj＝i｝）＝ ．  （9）

ここで，

E（cj，k cj，i |G1j－1）＝E（cj－1，k＋（1－β）I｛ɡj＝k｝）（cj－1，i＋（1－β）I｛ɡj＝i｝）|G1j－1）（

＝cj－1，k cj－1，i＋cj－1，k ＋cj－1，i
（1－β）cj－1，i

2（ j－1）
（1－β）cj－1，k

2（ j－1）

cj－1，k cj－1，i
1－β
j－1＝ 1＋ ）（ ．

よって，両辺の期待値をとり，ck，k＝1＋βに注意して以下を得る．

  E（cj，k cj，i）＝（1＋β） E（ck，i）
j

s＝k＋1
Π 1＋ ）（ 1－β

s－1 ．  （10）

したがって，（3），（7），（8），（9），（10）から以下を得る．

P（ɡj＝i， ɡr＝k）＝
1

2（r－1）
E（cr－1，kI｛ɡj＝i｝）

＝
1

2（r－1） ・E（cj，kI｛ɡj＝i｝）
r－1

s＝j＋1
Π 1－β

2（s－1）1＋ ）（

＝
1

4（r－1）（ j－1）
1－β
2（s－1）1＋ ）（

r－1

s＝j＋1
Π ・E（cj－1，k cj－1，i）

＝
1＋β

4（r－1）（ j－1）
1－β
2（s－1）1＋ ）（

r－1

s＝j＋1
Π

s＝k＋1

j－1

Π E（ck，i）1＋ ）（ 1－β
s－1

＝
（1＋β）2

4（r－1）（ j－1）
1－β
2（s－1）1＋ ）（ 1－β

2（s－1）1＋ ）（
r－1

s＝j＋1
Π

k

s＝i＋1
Π

s＝k＋1

j－1

Π 1＋ ）（ 1－β
s－1 ．

ここで補題 1 により，以下を得る．

≤ P（ɡj＝i， ɡr＝k）
1

2e1/2（ ）2（1－β） k
i（ ）（1－β）/2（1＋β）2

4（r－1）（ j－1） （ ）（1－β）/2r－1
j （ ）1－βj－1

k

（2e1/2）2（1－β）≤
k
i（ ）（1－β）/2（1＋β）2

4（r－1）（ j－1） （ ）（1－β）/2r－1
j （ ）1－βj－1

k
．

ここで，k ≥ 2，j ≥ 3 および r ≥ 4 を考慮して近似すれば，主張の最後の不等式を得る．� □

　これ以降，グラフの生成過程において連続する追加頂点列 v1，v2，…を添え字のみで 1，2，…と表し，頂

点列 vi，vi＋1，…，vj を数直線上の区間［i，j］内に含まれるものとして扱う．そして，区間［1，a）に含ま
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れる 1 つの頂点と区間［a，b）に含まれる 1 つの頂点を接続する辺の総本数を確率変数 X とし，［a，b）

に含まれる 1 つの頂点と［b，mn］に含まれる 1 つの頂点を接続する辺の総本数を確率変数 Y とする．

また，b＝a＋Δとし，Δは［a，b）に含まれる頂点数を表すものとする．

　このとき，E（XY/Δ）は区間［a，b）に含まれる 1 つの頂点当たり，区間外頂点と接続する辺の本数

の積 XY の期待値を意味する．すなわち，生成されるランダムグラフを何らかの情報伝達ネットワーク

とみなすと，E（XY/Δ）は，対象とする Δ人（個）の集まりが情報媒介者（物）として，単位当たりど

の位の情報量を平均して伝達するかを表す指標であり，ネットワークにおける情報伝達個体としての重

要性を意味している．次の定理は，Δ（対象となる情報伝達の個体数）が与えられたとき，おおよそど

の位の a（その個体数がネットワークに加入した相対的時期）のときに E（XY/Δ）が最大となるかを示

したものである．

定理 1

　区間［1，a）に含まれる 1 つの頂点と区間［a，b）に含まれる 1 つの頂点を接続する辺の総本数を X

とし，［a，b）に含まれる 1 つの頂点と［b，mn］に含まれる 1 つの頂点を接続する辺の総本数を Y とする．

また，b＝a＋Δとし，Δは［a，b）に含まれる頂点数を表す．このとき，ある正の定数 k1，k2 に対して，

k1 （ ）XY
Δ

f（a）
Δ

f（a）
Δ≤ E ≤ k2 を満たす関数 f （a）が存在し，f （a）は以下の性質を満たす．ただし，a ≥ 2

であり，λは λ ≥ 10 を満たす任意の定数であり，σ＝σ（n）は n→∞のとき，σ→∞かつ σ＝ο（n/Δ）と

なる n の任意の関数とする．また，任意の正の実数 r に対して，log log n ≤ Δ ≤ （log n）r とする．

（ⅰ） ≤ a≤ λΔ
Δ
λ において，f （a）の最小値を fmin，最大値を fmax とするとき，以下の不等式が成り立つ．

lim
fmin
fmaxn→∞ ＞0．

（ⅱ） lim
f（Δ/（λσ））

f（Δ/λ）n→∞ ＝0であり， lim
f（σλΔ）
f（λΔ）n→∞ ＝0である．

証明

　数直線上の頂点 i と頂点 j の間を結ぶ辺の存在を表す指示関数を I｛ i，j ｝と表す．すなわち，
⎧
｜
⎨
｜
⎩

I｛ i，j｝＝
1， iとjを結ぶ辺が存在する場合
0， そうでない場合

とする．そして，頂点 i が［1，a）に含まれ，頂点 k と頂点 j が［a，b）に含まれ，頂点 r が［b，mn］

に含まれるとき，j から i への辺の接続の有無および r から k への辺の接続の有無を考えると，以下の

ように確率変数 X と Y を表せる．

X＝∑1 ≤ i ≤ a－1，a ≤ j ≤ b－1 I｛ i，j ｝，Y＝∑a ≤ k ≤ b－1，b ≤ r ≤ mn I｛ k，r ｝.

このとき，

（ ）XY
Δ

1
Δ

E ＝ P（ɡj＝i， ɡr＝k）Σ
i，j，k，r
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である．

ここで，以下のように関数 f （a）を定義する．ただし，m は正の定数（1 つの頂点から出てゆく辺の本数，

既述）である．

1
1 ＋f（a）＝ ）（1－β）/2（ 1

2 ＋…＋）（1－β）/2（（ ）（ ）（1－β）/21
a－1

1
a ＋× ）（1－β）/2（ ＋…＋（ ）（ ）（1－β）/21

a＋1 （ ）（1－β）/21
b－1

1
a ＋× ）（1＋β）/2（ ＋…＋（ ）（ ）（1＋β）/21

a＋1 （ ）（1＋β）/21
b－1

1
b ＋× ）（1＋β）/2（ ＋…＋（ ）（ ）（1＋β）/21

b＋1 （ ）（1＋β）/21
mn

．

このとき補題 2 ⒝から，ある正の定数 k1，k2 に対して，以下を得る．

k1 （ ）XY
Δ

f（a）
Δ

f（a）
Δ≤ E ≤ k2 ．

　そこで，a の大きさについて場合分けして考える．ただし，b＝a＋Δであり，εと ε′は以下とする．

0＜ ε≤ ≤ ε'＜1，ε＝
1
2

1
2

1－β
2

，，ε'＝
1＋β
2

．

また，f （a）の近似値を評価する式として，s ≥ 2 のとき，

Σ 1
k）
ε（1

1－ε（（t＋1）1－ε－s 1－ε）≤ ≤
1
1－ε（t 1－ε－（s－1）1－ε）

t

k＝s
：ε′の場合も同様

を適用し，以下の各場合に応じてさらに近似評価する．

Case1:  ≤ a≤ Δ
Δ
λ ．

　f （a）の下限 f 1－（a）と上限 f 1＋（a）は以下のようになる．

f（a）≥ a1－ε（b1－ε－a1－ε）（b1－ε'－a1－ε'）（（mn）1－ε'－b1－ε'）
1

5（1－ε）2（1－ε'）2

≥ c1a1－ε －Δ1－εΔ1＋ （（mn）1－ε'－（2Δ）1－ε'））（（（ ）1－ε ）1
λ －Δ1－ε'Δ1＋ ）（（（ ）1－ε' ）1

λ

≥ c2a1－εΔ（（mn）1－ε'－（2Δ）1－ε'）．

最後の式を f 1－（a）（単調増加）とする．なお，最初の不等式では，（a＋1）1－ε－1≥
a1－ε

5
を利用して

いる．また，c1 と c2 は定数である．

f（a）≤ a1－ε（b1－ε－（a－1）1－ε）（b1－ε'－（a－1）1－ε'）（（mn）1－ε'－（b－1）1－ε'）
1

（1－ε）2（1－ε'）2

≤ c3a1－ε（2Δ）1－ε（2Δ）1－ε'（mn）1－ε'＝ c4a1－εΔ（mn）1－ε'．
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最後の式を f 1＋（a）（単調増加）とする．また，c3 と c4 は定数である．よって，この区間における f （a）

の最大値を fmax，1 とし，最小値を fmin，1 とすると，以下を得る．

・ ・＝lim
fmin，1

fmax，1n→∞
lim

c2
c4n→∞

lim
f 1－（Δ/λ）

n→∞≥ ＞0f 1＋（Δ）
（Δ/λ）1－ε

Δ1－ε
（mn）1－ε'－（2Δ）1－ε'

（mn）1－ε'
．

Case2: Δ ≤ a ≤ λ Δ.

f（a）≥ a1－ε（b1－ε－a1－ε）（b1－ε'－a1－ε'）（（mn）1－ε'－b1－ε'）
1

5（1－ε）2（1－ε'）2

≥ c5a1－ε・ （（mn）1－ε'－（a＋Δ）1－ε'）
（21－ε－1）Δ

aε
・ ・
（21－ε'－1）Δ

aε'

．＝c6 （（mn）1－ε'－（a＋Δ）1－ε'）
Δ2

aε

最後の式を f 2－（a）（単調減少）とする．なお，2 番目の不等式では，0＜α＜1 かつ 0＜x ≤ 1 のとき，

以下の不等式が成り立つことを b1－ε－a1－ε および b1－ε′－a1－ε′ に適用している．

（2α－1）x＋1 ≤ （1＋x）α ≤ 1＋αx.

また，c5 と c6 は定数である．

最後の式を f 2＋（a）（単調減少）とする．なお，2 番目と 3 番目の不等式では，上記の不等式を利用して

いる．また，c7 と c8 は定数である．よって，この区間における f （a）の最大値を fmax，2 とし，最小値を

fmin，2 とすると，以下を得る．

．・ ・＝lim lim
c6
c8n→∞

lim
f 2－（λΔ）

n→∞≥ ＞0f 2＋（Δ）
Δε

（λΔ）ε
（mn）1－ε'－（（1＋λ）Δ）1－ε'
（mn）1－ε'－（2Δ－1）1－ε'

fmin，2
fmax，2

　以上のことと， lim
f 2＋（Δ）

n→∞ f 1＋（Δ）
が正の定数であることを考慮すれば，（ⅰ）を得る．

Case3:  ．a≤
Δ
λ

f（a）≥ c9a1－ε（（a＋Δ）1－ε－a1－ε）（（a＋Δ）1－ε'－a1－ε'）（（mn）1－ε'－（a＋Δ）1－ε'）

≤ c7 a1－ε
aε aε'

・ ・（（mn）1－ε'－（a＋Δ－1）1－ε'）・
（1－ε）Δ （1－ε'）Δ

f（a）≤ a1－ε（b1－ε－（a－1）1－ε）（b1－ε'－（a－1）1－ε'）
1

（1－ε）2（1－ε'）2

×（（mn）1－ε'－（b－1）1－ε'）

≤ a1－ε（b1－ε－a1－ε）（b1－ε'－a1－ε'）（（mn）1－ε'－（a＋Δ－1）1－ε'）
4

（1－ε）2（1－ε'）2

．≤ c8 （（mn）1－ε'－（a＋Δ－1）1－ε'）
Δ2

aε
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最後の式を 　　　 とする．また，c9 と c10 は定数である．

f（a）≤ c11a1－ε（（a＋Δ）1－ε－（a－1）1－ε）（（a＋Δ）1－ε'－（a－1）1－ε'）

×（mn）1－ε'－（b－1）1－ε'）（
≤ c12a1－εΔ（mn）1－ε'．

最後の式を f 3＋（a）とする．また，c11 と c12 は定数である．よって，以下を得る．

lim
f 3＋（Δ/（λσ））

n→∞≤ f 3－（Δ/λ）
＝0lim

n→∞
f（Δ/（λσ））

f（Δ/λ） ．

Case4: λ Δ ≤ a.

　f （a）は，Δ ≤ a ≤ λ Δの場合と同じ下限と上限になる．すなわち，下限 f 4－（a）と上限 f 4＋（a）を

f 4－（a）＝ f 2－（a）， f 4＋（a）＝ f 2＋（a）のようにすれば，以下となる．

lim
f 4＋（σλΔ）

n→∞≤ f 4－（λΔ）
＝0lim

n→∞
f（σλΔ）
f（λΔ） ．

　以上のことから（ⅱ）を得る．� □

　定理 1 からわかることは以下である．Δ/λ ≤ a ≤ λ Δにおいて，E（XY/Δ）の値は大きく変動しない（n→

∞のとき，最大値に対する最小値の比はある正の定数より大という意味で）こと，および，この区間の

外では a の値が Δから離れるにつれ E（XY/Δ）の値は急激に小さくなることから，E（XY/Δ）の値を最

大にする a の値は，Δ/λ ≤ a ≤ λ Δを満たすことが示唆される．さらに，a のとりうる範囲において，E（XY/
Δ）の下限と上限はともに a＝Δで最大になることから，E（XY/Δ）も a＝Δの付近（βに依存しないに

注意）で最大となることが推測される．このとき推測される最大値は Δ（1＋β）/2n（1－β）/2 と同じオーダー

である．

　次に，区間［a，b）に含まれる 1 つの頂点当たり，区間外の頂点と接続する辺の本数の期待値 E（（X＋Y）/Δ）

についても同様の考察をする．なお，この定理でも，定理 1 の証明で定義した記号を用いるものとする．

定理 2

　ある正の定数 k1，k2 に対して，k1
ɡ（a）
Δ

ɡ（a）
Δ（ ）X＋Y

Δ≤ E ≤ k2 を満たす関数 ɡ（a）が存在し，ɡ（a）

は以下の性質を満たす．ただし，a ≥ 2 であり，λは λ ≥ 10 を満たす任意の定数であり，σ＝σ（n）は

n→∞のとき，σ→∞かつ σ＝ο（n/Δ）となる n の任意の関数とする．また，任意の正の実数 r に対して，

log log n ≤ Δ ≤ （log n）r とする．

Δ
λ≥ c9a1－ε Δ1－ε－ Δ1＋（mn）1－ε'－ ））1－ε （（（ （（） Δ

λ
Δ1－ε'－ ）1－ε'（（ ） ））1－ε'1

λ

≥ c10a1－εΔ（mn）1－ε'－（ Δ1＋ ）（（ ））1－ε'1
λ

．

f 3－（a）
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（ⅰ）
Δ
λ ≤ a≤ λΔにおいて，ɡ（a）の最小値を ɡmin，最大値を ɡmax とするとき，以下の不等式が成り立つ．

（ⅱ） ＞0lim
n→∞

ɡ（Δ/（λσ））
ɡ（Δ/λ） であり， ＝0lim

n→∞
ɡ（σλΔ）
ɡ（λΔ）

である．

証明

　証明の手順は定理 1 と同様なので，その概略だけを示す．

　まず，ɡ（a）を次のように定めると，

1
i ）
ε（ ＋ɡ（a）＝Σ

a－1

i＝1

1
i ）
ε'（Σ

b－1

i＝a

1
i ）
ε（Σ

b－1

i＝a

1
i ）
ε'（Σ

mn

i＝b

定理 1 の証明と同様，ある正の定数 k1，k2 に対して，以下を得る．

k1
ɡ（a）
Δ

ɡ（a）
Δ（ ）X＋Y

Δ≤ E ≤ k2 ．

以下では，Case1 と Case2 の場合のみ，その概略を示す．

Case1:  ≤ a≤ Δ
Δ
λ

正の定数 c1，c2 に対して，以下を得る．

ɡ（a）≥ c1 a1－ε（b1－ε'－a1－ε'）＋（b1－ε－a1－ε）（（mn）1－ε'－b1－ε'））（
．）≥ c2 a1－εΔ1－ε'＋Δ1－ε（（mn）1－ε'－（2Δ）1－ε'）（

最後の式を ɡ（a）の下限として ɡ1－（a）とする．

正の定数 c3，c4 に対して，以下を得る．

ɡ（a）≤ c3 a1－ε（b1－ε'－（a－1）1－ε'）＋（b1－ε－（a－1）1－ε）（（mn）1－ε'－（b－1）1－ε'））（
≤ c4（a1－εΔ1－ε'＋Δ1－εn1－ε'）．

最後の式を ɡ（a）の上限として ɡ1＋（a）とする．

Case2: Δ ≤ a ≤ λ Δ.

正の定数 c5，c6 に対して，以下を得る．

ɡ（a）≥ c5 a1－ε（b1－ε'－a1－ε'）＋（b1－ε－a1－ε）（（mn）1－ε'－b1－ε'））（
Δ
aε（ ）≥ c6 （（mn）1－ε'－（a＋Δ）1－ε'）Δ＋ ・

最後の式を ɡ（a）の下限として ɡ2－（a）とする．

正の定数 c7，c8 に対して，以下を得る．

＞0lim
n→∞

ɡmin
ɡmax
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最後の式を ɡ（a）の上限として ɡ2＋（a）とする．

　あとは，定理 1 と同様に考えて，主張が示される．� □

　E（（X＋Y）/Δ）についても，その値を最大にする a の値は，Δ/λ ≤ a ≤ λ Δを満たすことが示唆される．

さらに，前述の定理と一部違って，区間〔2，λ Δ〕では E（（X＋Y）/Δ）は大きな変化をしないと考えら

れる．また，このとき推測される最大値は（n/Δ）（1－β）/2 と同じオーダーである．

　さらに，a と Δの大きさに一定の関係があると，両端点が区間［a，b）に含まれる辺がほとんど存

在しない事実を定理 3 として導ける．

定理 3

　両端点が区間［a，b）に含まれる辺の総本数を Z とする．このとき，a ≥ 2 および正の定数 c に対して，

以下の式が成り立つ．

E（Z） ≤ c（（b－1）1－ε－（a－1）1－ε）（（b－1）1－ε′－（a－1）1－ε′）.

また，Δ 2＝ο（a）のとき，ほとんどすべてのランダムグラフにおいて，Z＝0 である．

証明

　定理 1 の証明と同様に考えれば，正の定数 c に対して，以下となる．

1
i ）
ε（E（Z）≤Σ

b－1

i＝a

1
i ）
ε'（Σ

b－1

i＝a

≤ c（（b－1）1－ε－（a－1）1－ε）（（b－1）1－ε'－（a－1）1－ε'）．
Δ 2＝ο（a）のとき，

E（Z）≤4c（b1－ε－a1－ε）（b1－ε'－a1－ε'）

（1－ε）Δ
aε

Δ2

a
（1－ε'）Δ

aε'≤ 4c ＝4c（1－ε）（1－ε'） → 0    （n →∞）・ ．

Markov の不等式から，P（Z ≥ 1）→0．よって主張は示された．� □

　定理 3 から，Δ 2 が a より十分小さい場合には，生成されるほとんどのランダムグラフにおいて，両

端点が区間［a，b）に含まれる辺は存在しないことがわかる．また，この性質は βに依存していない．

参考文献

A. Barabási, and R. Albert, Emergence of scaling in random networks, Science 286 （1999）.

B. Bollobás and O. Riordan, “The diameter of a scale-free random graph”, Combinatorica （2004）.

A.D. Broido and A. Clauset, Scale-free networks are rare, Nature communications （2019）.

C. Cooper and A. Frieze, A general model of web graphs, Random Structures & Algorithms, Wiley On-

ɡ（a）≤ c7 a1－ε（b1－ε'－（a－1）1－ε'）＋（b1－ε－（a－1）1－ε）（（mn）1－ε'－（b－1）1－ε'））（
Δ
aε（ ）≤ c8 （（mn）1－ε'－（a＋Δ－1）1－ε'）Δ＋ ・ ．



『経済研究』（明治学院大学）第 171 号

46

line Library （2003）.

浜口幸弘，スケールフリーグラフ再考Ⅰ，明治学院大学経済研究（2025）.


