An Unbalanced Multi-sector Growth Model
with Constant Returns: A Turnpike Approach

Harutaka Takahashi
Department of Economics
Meiji Gakuin University

09-03



An Unbalanced Multi-sector Growth Model with Constant

Returns: A Turnpike Approach
by

Harutaka Takahashi*
Department of Economics
Meiji Gakuin University

(May, 2009)

*The paper is prepared for the International Conference on ” Globalization, interdependences

and macroeconomic fluctuations”, held in Paris, June 11-13, 2009. The paper is very preliminay.

Please do not quote.



1 Introduction

Since the seminal papers by Romer (1986) and Lucas (1988), we have witnessed a
strong revival of interest in Growth Theory under the name of Endogenous Growth
Theory, and especially, neoclassical optimal growth models have been used as ana-
lytical benchmark models, which have been intensively studied in late 60’s. However,
these research models have a serious drawback. Since the models are based on the
highly aggregated macro-production function, they cannot explain the important em-
pirical evidence, as I will give a detailed discussion in the following section. Recent
empirical studies at the industry level among countries provide a clear evidence that
individual industry’s per-capita capital stock and output grow at industry’s own
growth rate, which is closely related to industry’s technical progress measured by the
total factor productivity of the industry. For example, the per-capita capital stock
and output of an agriculture sector grow at 5% per annum along its own steady state,
on the other hand, those of a manufacturing sector grow at 10% per annum along its

¢

own steady state. Let us refer to this phenomenon as “ unbalanced growth among
industries”. To tackle the problem, it has raised a strong theoretical demand for
constructing a multi-sector growth model. In spite of strong needs for such a model,

very little study of this type of model has been done so far.

On the other hand, the optimal growth model with heterogeneous capital goods



Scheinkman (1978) and McKenzie (1986)). Thus he still did not fully exploit the
structure of the neoclassical optimal growth model, especially the dynamics of the
path on the Neumann-McKenzie facet to obtain the Turnpike property.

The paper is undertaken to fill the gap between the results derived by the theo-
retical researches explained above and the empirical evidence provided by the recent
empirical studies at the industry level among countries by way of applying the theo-
retical method developed in Turnpike Theory. I will first set up a multi-sector optimal
growth model, where each sector exhibits the Harrod neutral technical progress with
a sector specific rate. The presented model will be regarded as a multi-sector opti-
mal growth version of the Solow model with the Harrod neutral technical progress.
Secondly, I will rewrite the original model into a per-capita efficiency unit model.
Then as the third step, I will transform the efficiency unit model into a reduced form
model. Then the method developed in Turnpike Theory are ready to be applicable.
I will first establish the Neighborhood Turnpike Theorem demonstrated in McKenzie
(1983). The neighborhood Turnpike means that any optimal path will be trapped in
a neighborhood of the corresponding optimal steady state path when discount factors
are close enough to one and the neighborhood can be made as small as possible by
choosing a discount factor arbitrarily close to one. Then, I will show the local stabil-
ity by applying the logic used by Scheinkman (1976): there exists a stable manifold

that stretches out over today’s capital stock plane. To demonstrate both theorems,



easily accessed on the Web: the EU-Klems Growth and Productivity Database®, which
covers 28 countries with 71 industries from 1970 to 2005. It contains the GDPs and
the total factor productivity (TFPs) of industries. Growth accounting has been used
to analyze economic growth in countries. One of the more interesting applications is
to the industries. Let us assume the following production function of the i** industry

in a country.
Yi(t) = F*(Ku(t), Kas(t), - - -, Kna(t), As(t) L(2)),

where Y; : t period capital goods output of the i industry, K; : i capital goods
used in the j* industry in the t* period, A? : t*» period labor-argumented technical-
progress, and L;(t) : t™ period labor input of the i* industry. If 6, stands for
the factor share of the j* input factor, then we may derive the following relation

concerned with the it* industry;

. Y (s g Ka g L
A Y <Zj=1 0;: K + 001f:>

A bo:
Based on this equation, we are able to caluculate TFPs of the 20 industries of a

country?. Figures 1 show the relationship between the per-capita U.S. GDP average

growth rate and the U.S. TFP average growth rate at the industry level from 1970 to

1URL http://www.euklems.net
2The U.S. 20 industries are followings:

1:TOTAL INDUSTRIES 2 :AGRICULTURE, HUNTING, FORESTRY AND FISHING
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1) Each industrial sector has its own steady state with the sector specific growth

rate.

2) The steady state level and its growth rate are highly related to its own TFP.

These facts cannot be explained by the new growth theory totally based on the
macro production function. Thus we need to set up an industry based multi-sector
growth model. On the other hand, the turnpike theory are established based on the
multi-sector model. However it has a drawback, too. The turnpike theory means
that each industrial sector with different initial stocks will eventually converge to its
own optimal steady state with the common balanced growth rate. In other words,
each industry’s per capita stock will converges to a certain constant ratio. Thus the
turnpike theory cannot explain the facts that each industry’s per-capita stock grows
at its own growth rate, which is determined by the sectoral TFP.

OECD (2003) also studied the productivity growth at the industry level in de-
tail and reported the following results, which are consistent with our observations

discussed above.

e A large contribution to overall productivity growth patterns comes from produc-
tivity changes within industries, rather than as a result of significant shifts of

employment across industries.

e TFP depends on country/industry specific factors.



=0
wherei = 1,2,...,n,t =0,1,2,...., and the notation is as follows:

P = subjective rate of discount, r>g,
C(t) € R, = total consumption goods produced and consumed at t,
Yi(t) € Ry = t'" period capital goods output of the i** sector,
Ki(t) € R, = t'* period capital stock of the i** sector,
Bd0)= Ry = initial capital stock of the i'* sector,
Fi(-): R~ R, = production function of the j™ sector,
L;(t) = t'" period labor input of the i sector,
L(t) = t'" period total labor input,
K;;(t) =i capital goods used in the j** sector

in the t** period,
; = depreciation rate of the it" capital goods,

given as 0<é;<1,
A;(t) =t period labor-argumented technical-progress

of the i*" sector.
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Then,

where i (t) = fiaim» Fi(t) = Aty kai(t) = 7oiiids, -+ kns(t) = 280 and £:(t) =

Ai(t)Li(t)
A()L(E)

Applying the same transformation to the consumption sector, we have also

&) = fOkwo(t), kao(t), -+ , kno(t), Lo(t)).

Furthermore, we may also transform the t** sector’s accumulation equation as

followas; dividing both sides by A:L(%),

Note the following relation:

K(t+1) _ (1+a)(1+g)K(t+1) _ "
ALE) [+ a)AG][A+9)LE)] (14 04)(1 4 g)ki(t + 1).

Then we have finally,

Ti(t) + (1= 6)k:(t) — (1 + )1 + g)kit + 1) = 0.

In a vector form expression,

¥+ @-A)k(t) - (1+¢)Gk(t+1) =0
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y+I-Ak() - (1+9)Gk(t+1)=0, (8)

Fs(t) =R(0) G =1, ,m), (10)
=0

We may add the following assumption and prove the basic property, Lemma 1;
Assumptin 3. 0 < p < 1.

Lemma 1. Under Assumption 2, Eqgs.(6)-(10) except Eq.(8) are summarized as the
social production function &(t) = T'(3(¢), k(¢)) which is continuously differen-
tiable on the interior R2" and concave where y(t) = (y1(t), y3(t),- - - , yn(t)) and

k(t) = (kl(t)7 kQ(t)v e 7kn(t))'

Proof.

See Benhabib and Nishimura (1979). =
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where the partial derivative vectors mean that

Vo (k(t),k(t +1)) = [0V (k(t),k(t+1))/0ki(2), -, 0V (k(t), k(t + 1))/0ka(t)]",

V.(k(t—1),k(t) = [OV(k(t—1),k(£)/0k(2), - , 0V (k(t), k(t - 1))/Okn(t)]

and 0 means an n dimensional zero column vector. “ ¢ ”

implies transposition of
vectors. Note that under the differentiability assumptions, all the price vectors will

satisfy the following relations:

g~ =\8dd(de= 1,

pi = —qdT(¥,k)/0k; (i=1,2,---,n),
w; = q@T(?,K)/@E (1='1,2,--~ .n).
wo = ¢¢+py—wk

Using these relation, we may define the price vectors of capital goods as (n x 1)
row vector p = (p1,ps,- - ,Pn), the output of capital goods as ( n x 1) vector y =
(U1,Y2," ** ,Un)", the rental rate as (1 X n) row vector w = (wy,wy, - ,w,) and the
capital stock as (n x 1)vector k = (ki, ko, - , kn)'. wp is a wage rate. For simlicity

we may assume that all the price vectors (p, w,w) are expressed as the relative price

vectors of the price of the consumption good gq.

Definition. An optimal steady state path kP (denoted by OSS henceforth) is an
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I-(@I+A)A] ' >0
where © is a n X n zero matrix®.

By the well known equivalence theorem of the Hawkins-Simon condition and The-
orem 4 of Mckenzie (1960), Assumption 4 is equivalent to the property that the matrix
[I— (rI+ A)A'] has a dominant diagonal that is positive; there exists y > 0 such
that [I — (rI+ A)A']y > 0.

We need the following extra assumption.
Assumption 5. 1> ag > max ||
g=1%5n

Remark 1 The assumption means that the TFP growth rate of the consumption
sector is the highest among those of sectors. Takahashi, Mashiyama and Sakagami
(2004) reported that in the postwar Japanese economy, the consumption sector has
exhibited a higer per-capita output growth rate than that of the capital goods sector
in a two-sector model. If the TFP growth rate has a positive correlation with the

per-capita sectoral GDP growth rate, this fact will partially support Assumption 5.

3Let A and © be n-dimentional square matrix and n-dimensional zero matrix. Then A > © if
ai; > 0 for all 4,5, A > © if a;; > 0 for all 4, j and a;; > 0 for some 4,5 and A > © if a;; > 0 for all

i, 7.

19



X = A"y where X = (1,X)" and ¥ = (c,¥). Note that the equality of the first
elements of X and A"y will provide Eq. (9); the full employment condition. Since

the labor constraints are satisfied for ¥ and that A" is a submatrix of A", it follows

that X = A"y holds.

Z-p'x = (ﬁ) G {I+[I-A-(1+9)Gp A"}y
(1+a1) 0
_ <ﬁ) GU+I-A—(1+g)
0 (14 an)
1 -
Tl F)T
y e A
( B o
= (1—41-9_>G_1<I+ I-A—(1+7) Ay
| 0 ey )] )

1 —r
> (1__‘__5> G-! {I +[I-A - (1+7)IA }y due to Assumption 5,

1 N
= (@) G YI-(rI+A)]A’Y > 0 from Assumption 4,

Therefore y will be chosen so that Z — p~!X > 0 where (X,z)cD. See also Lemma 3

through Lemma 7 in Takahashi (1985). m

Remark 2 It should be noted that since k = Z%()%:’ it follows that kf (t) = kP A;(t) =
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and further calculation will finally yield:

1+7r
p|_ .
P [ I+A+<1+QO>G] w

These are clearly non-arbitrage conditions among capital goods and imply that
any capital good must yield the same rate of returns as the subjective discount rate
p. Thus the Euler conditions are the non-arbitrage conditions.

Because of the differentiability and the constant returns to scale technologies,
the well-known proposition proved by Samuelson (1945) will hold: the cost function
denoted by Ci(wo, w?) (i = 1,--- ,n) is homogeneous of degree one and C"/dw; =
a;; where a;; = ki /y; 1 =1,2,---,n; j=0,1,--- ,n). Due to the cost minimization
condition and this property, a unique technology matrix A is chosen along the 0SS
k*. Also note that due to Assumption 3, for a given p € (0,1], the uniquely chosen

technology matrix A’ along the OSS k” have to satisfy,
1-(I+ M)A > 6.

Furthermore it follows that af, > 0 and af > 0 from Assumption 2. Henceforth, we
use the symbol ”p” to clarify that vectors and matrices are evaluated along OSS k*.

Conbining these results, the following important property will be established:

Lemma 2. When p € (0,1] , there exists a unique OSS (k* > 0)¢ with the

6Let x and y be n-dimensional vectors. Then x >y if z; > y; for alli, x>y if z; > y; for all i

and at least one j, z; > y; and x >y if @; > y; for all i.
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And the nonsingularity of b? comes from the following observation: From Murata
(1977), b* = [a#—(1/afy)a%af ] . Furthermore, by Gantmacher (1960), it also follows
that det A? = agydet[a” — (1/af;)a%yaf]. Since AP is non-singular, the result follows.

From now on, we are concentrated on the OSS with p = 1 denoted by k*. We will

13

also use “ * ” to denote the elements and variables are evaluated at k*.

Definition. When p = 1, the chosen technology matrix A* satisfies the Generalized

Capital Intensity GCI -I condition, if there exists a set of positive number

(dy,--- ,d,) such that

a*

dy (% _ %oy 3o

a’ a:
0s 00 i£8.0

* *
Q.. a

st s0 R
= ——="Ter s =1~ ..

*
Qp;  Apo

Similarly, the technology matrix A* satisfies the Generalized Capital Intensity

GCI -1I condition, if there exists a set of positive number (dy,--- ,dy) such that
a:s a:()
= B ieal
Qos Qoo
and
n
ar a: a, al
de |22 — 0] > g di | =2 — 20| fors=1,---,n.
Gps  Ago dg; Qg

1#s,0
Consider a capital good sector s, and focus on its own capital input s and its

capital-labor ratio in all the other sectors. By the definition the left-hand side of
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has a dominant diagonal that is positive (negative) for rows’.

Proof. Due to Lemma 3, under the Strong GCI-I (the Strong GCI-II), the inverse
matrix B* has positive (negative) diagonal elements and negative ( positive) off-
diagonal elements. From the accumulation equation y* = (1 + n)Gk* — (I — A)k”

and y* = b*k* + b¥, it follows that
b*—((14+9)G+A-I)k*=-b}

Due to Lemma 3, —b* < (>)0. Theirfore the matrix [b* — ((1 4+ ¢)G + A —I)] has
the negative (positive) dominant diagonal for rows. m
From now on we may call the dominant diagonal that is negative as the n.d.d.

and also call the dominant diagonal that is positive as the p.d.d. for short.
From the Euler equations (12), its Jacobian J(k, p) is
J(k,p) = pVae(k, k) + pVa:(k k) + Vaa(k k) + V. (k, k),
which at k* is

J(k,1) = Vo, (k" k") + V. (K", k") + Voo (K", k) + Vo (k*, k)

"Suppose A is an n x n matrix and its diagonal elements are negative (positive). Let there exist
a positive vector h such that h; | ai [> Y7 ;. hi | aij |, i=1,2,--- ,n. Then A is said to have
a dominant main diagonal that is negative (positive) for rows. See McKenzie (1960) and Murata

(1977).
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where the suffix ” ¢ ” means a transpose of a matrix. Utilizing these relations,
all the partial derivative matrices at k* can be expressed in terms of the matri-
ces b* and Ty as follows: Ty = (b*) 1Th(b*) ! = (b*) 1T}, T =
—(b*)7'Tq,, and Ty = —Ta(b*)~L.Substituting Y, = (g1 +A) and Y, = I into

Eq.(2.22) of Takahashi (1985), the Jacobian will be expressed as follows:

Ty Tr 14+9)G+A-1
Jk1)=[(1+9)G+A-LI]
Ty Ty I
If the righthand side is negative definite, then the proof will be completed. Substitut-
ing all the relations obtained before into the Hessian matrix of the social production

function and suppose that the matrix b* is nonsingular, then we may yield the fol-

lowing equation:

Ty Ti (149 G+A-1
(1+9)G+A-LT]

Tor To I
= (1+9)G+A-I)T,,(1+9)G+A-1T)

+(14+9)G+A DTy + T1((1+9)G+ A —1) + Ty
= [b* = ((1+9)G+ A —-DP?[(b*)']*Ts.

Due to Lemma 4, the matrix [b* — ((1 4 g)G + A —I)] has the negative (positive)

d.d. from the GCI conditions and it must be nonsingular. b* is also nonsingular. Ts,
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From the definition above, the NMF is a set of (x,2) capital stock vectors which
arise from the exact same net benefit as that of OSS when it is evaluated by the
prices of OSS. Also, the VMF is the projection of a flat on the surface of the utility
function V' that is supported by the price vector (—p#, pp” , 1) onto the (x, z)-space. In
Takahashi (1985), I consider the case of the ob jective function where n capital goods
as well as pure-consumption goods are also consumable., Here, the capital goods are
not consumable but the discounted sum of the sequence of pure-consumption goods
is directly evaluated. Due to the well-established Nonsubstitution Theorem, along
the OSS, a unique technology matrix A? defined before will be chosen.

By exploiting this fact, we will re-characterize the VMF as a more tractable for-

mula with the (n+1) by (n+1) matrix A? and (n+1)-dimensional vectors as follows:

Lemma 6. When A’ is non-singular, (x,z) € F(k?,k?) if and only if there exists

Y = (c,y)" 2 0 such that

HR = Ay

5 gl <1in>§‘l[§+a—m]§
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{[pPy — W] — s wPkP]} =0 and c = ¢’ Thus it finally yields that

This result is Condition i), which implies that (co,¥; x) should lie on the production
frontier of T(y,k) and in each sector, the chosen technology must be the same as
that in the OSS. In other words, the OSS technology matrix A’ will be chosen. Thus
on the NMF, the exact same technology matrix as the corresponding OSS is chosen.
In other words, given 0SS technology matrix Ar, the cost minimization and the
full-employment conditions for labor and capital goods are satisfied. Therefor, the

following equations must hold:

1)¢” = whago + wealp,

2) p? = whag. + wha’,

3)1 = afc+ Ay,

4% =aye+a'y
The cost-minimization conditions 1) and 2) imply that the same technology as that
of OSS is chosen. 3) and 4) means that, under the chosen technology, the full employ-
ment conditions hold. It is not difficult to see that 3) and 4) can be summarized as
Condition ii). From these conditions, it follows that c(t) > 0 and y(t) > 0 for all t,
respectively. Condition ii) are the (n+1)—dimensional capital accumulation equations
and z is determined through this relation. ®
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independent vectors d" (h =1,--- ,n—1). It is clear that d* shows a reallocation of
fixed labor among sectors. Moreover, define the following: for h = 1,2,--- ,n and a

positive scalar ¢y,

?h ?,D i ghdha

% = AP = AP+ AL

_ Rt enardt

and

= G [+ 1A -D)%] +e,G [d" + (I - A)A*d"]

= K +e,G I+ (I-A)A*d"

Note that the first element of the vector A?d" is zero due to the fact that 3" ag;d? =
0 for all A. Since the first element of k is one, the first element of X" will be one.
So the vectors X" (h = 1,--- ,n) are well defined. Since the first element of k? is 1,
z" is also well defined for all . due to the fact that y? > 0 and k> 0, €, can be
chosen so that y* > 0,X" > 0 and 2" > 0 for all A. From our way of construction,
the vectors ", X" and z" satisfy Lemma 2 and the corresponding vector (x", z") also
belongs to F(k?, k?) for all h. This implies that there are n linearly independent
vectors (xh — k?,z" — kP). Therefore, there are exactly n linearly independent line
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Proof. See the argument of Section 4 of Takahashi (1993). =
The Neighborhood Turnpike Theorem means that any optimal path must be
trapped in a neighborhood of the corresponding OSS and the neighborhood can be

taken as small as possible by making p close enough to one.

5 Turnpike Theorem

The full Turnpike Theorem is described as the following theorem:

Full Turnpike Theorem There is a p > 0 close enoug to 1 such that for any
p € [p,1), an optimal path k(t) with the sufficient initial capital stock will

asymptotically converge to the optimal steady state k”.

As we have shown, under Assumption 7, the dimension of the VMF is n. We
will keep this assumption henceforth. On the other hand, the dynamics of the VMF
is expressed by the n-dimensional linear difference equation (8). To show the full

turnpike theorem we need to strengthen the generalized capitl intensity conditionds,

GCI-I and GCI-II.

Remark 3 the first to be noted that in the efficiency unit term, the full turnpike
means that each sector’s optimal path converges to the optimal steady state. In original

terms of series, any industry’s per-capita capital stock and output grow at the rate of
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Lemma 10. Under the negative (positive) d.d., the n-dimensional NMF, F(k*, k?)

where p € [p,1) turns out to be a linear stable (unstable) manifold.

Proof. Because b? + I—A = [b? + (I—A) — (1 + g)G] + (1 + n)G, it follows
that (1/(1+g)Gb? +1—A] = (1/(1+9))G[* + (I -A) - (1 +n)G] + 1. Defining

C=(1/(1+g)GMP* +(I-A) - (1+9)G], Eq.(8) can be rewritten as:

n(t+1)=(C+Dn().

Note again that n(t) = (x — k) and n(t +1) = (z — k?). Thus applying Lemma
4, under the negative d.d. (the positive d.d.), any path on NMF will converge to
(diverge from) the OSS. =

From this lemma, under the Strong GCI-II condition, the local stability and the
stability of the NMF hold simultaneously. The stability of the NMF implies that
the Neighborhood turnpike holds. Thus combining both results, the following full

Turnpike theorem will be established.

Corollary. Under the Strong GCI-II condition, the full Turnpike Theorem will be

established.

Proof. To achieve the full Turnpike theorem, we need to combin the Neighborhood
Turnpike Theorem and the local stability of the OSS. The Neighborhood Turnpike
Theorem means that any optimal path should be trapped in the neighborhood of the
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det V2, = —(det(b?) ") det[b? + (I — A)] det Th,

Since T%, is negative-definite, it is non-singular. Furthermore, [b? + (I — A)] has
a quasi-dominant diagonal that is positive under the GCI-I condition, it also non-
singular. Thus VP?_ is non-singular. On the other hand, the GCI-I condition implies
that the VMF is explosive. This means that there are n characteristic roots with
absolute value greater than one. Applying Lemma 11, this also implies that there are
n characteristic roots with its absolute value less than one. So the OSS satisfies the
local stability. m

Thus we have established the following theorem:

Theorem 2 Under the both GCI conditions, the OSS k” exhibits the full Turnpike

Theorem.

Proof. Under the GCI-II condition, the full Turnpike Theorem will be established
due to the above corollary. On the other hand, under the GCI-I condition, from
Lemma 12, the OSS will exhibit the local stability. Since any path on the VMF is
totally unstabl, the NMF is "stable” and the Neighborhood Turnpike Theorem hold.
Combining both results again, the full Turnpike Theorem is also established. This

completes the proof. m

41



Benhabib, J. and A. Rustichini,1990. Equilibrium cycling with small discount-

ing. Journal of Economic Theory 52, 423-432.

Burmeister, E. and A. Dobell, 1970. Mathematical Theory of Economic Growth

(Macmillan, London).

Burmeister, E. and D. Grahm, 1975. Price expectations and global stability in

economic systems. Automatica 11, 487-497.

Gantmacher, F. 1960. The Theory of Matrices vol. 1 (Chelsea, New York).

Inada, K. 1971. The production coefficient matrix and the Stolper-Samuelson

condition. Econometrica 39, 88-93.

Jones, R., S. Marjit and T. Mitra, 1993. The Stolper-Samuelson theorem: Links
to dominant diagonals, in: R. Becker, M. Boldrin, R. Jones and W. Thomson,
eds., General Equilibrium, Growth and Trade II -the legacy of Lionel McKenzie,

(Academic Press, San Diego).

Levhari, D. and N. Liviatan, 1972. On stability in the saddle-point sense. Jour-

nal of Economic Theory 4,88-93.

Lucas, R., 1988. A Mechanics of Economic Development. Journal of Monetary

Economics 22, 3-42.

43



Scheinkman, J., 1976. An optimal steady state of n-sector growth model when

utility is discounted. Journal of Economic Theory 12, 11-20.

Romer, P. ;,1986. Increasing Returns and Lomg-run growth. Journal of Political

Economy 94, 1002-1037.

Srinivasan, T., 1964. Optimal savings in a two-sector model of growth. Econo-

metrica 32, 358-373.

Takahashi, H., 1985. Characterizations of Optimal Programs in Infinite

Economies, Ph.D. Dissertation, the University of Rochester.

Takahashi, H., 1992. The von Neumann facet and a global asymptotic stability.

Annals of Operations Research 37, 273-282.

Takahashi, H., 2001. A stable optimal cycle with small discounting in a two-

sector discrete-time model. Japanese Economic Review 52, No. 3, 328-338.

Takahashi, H., K. Mashiyama, T. Sakagami, 2009. Why did Japan grow so fast
during 1955-1973 and the Era of High-speed Growth end after the Oil-shock?:
Measuring capital intensity in the postwar Japanese economy, Working Paper

08-2, Dept. of Economics, Meiji Gakuin University.

Yano, M., 1990. Von Neumann facets and the dynamic stability of perfect fore-

45



F(k(p)) where (x',2z') € int D , (x,2) # (x',2') and p’ € [p, 1) is chosen close enough

to p. Now let us define the plain H* is defined as follows:
H* = {(x,2) € D : tolak(p') + (1—a)k(p),ak(p) + (1-a)k(p)l+

n n
Zth[axj(p') + (1 — a)x’(p), 0z’ (p) + (1 — a)2’ (p)]} where Zth =l
h=1 h=1
We can always find an intersection (x*,z*) between H® and the line obtained by
connecting points (x,z) and (x/,2') unless (x,z) = (x/,2'). Since (x%,2%) is on the

plain H?, it can also be expressed as follows:

(x%,2%) = tg[ak(p) + (1—a)k(p),ak(p’) + (1—a)k(p)]+

n

S teaxd (o) + (1 = a)x’(p), a2 (p') + (1 — 2)2°(p)] where Y =1
h=1 h=1

where & — 0, [ok(¢) + (1—a)k(p)] — k(p) and [ax*(¢') + (1 — a)x*(s), az"(p') +
(1 — a)z"(p)] — (x?,2°) for h = 1,--- ,n. Therefore (x,2z%) converges to (x,2z) as
o — 0. Also note that (x®,2®) € int D due to the convexity of D and the fact that

(x',2') € int D. On the other hand, because of the continuity of k(p),x(p) and z(p)

in p € [p,1). for any e > 0 there exists §* > 0 such that [p® — p| < 6% implies that

k(p*) — [ek(p) + (1 — a)k(p)]|| <&

and for h= 1;-+= ,0,

k() k(%) = [ox"(5') + (1 — @)x*(p), az"(p') + (1 — 2)z"(p)]|| < &
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Figure 1: U.S. Economy, 1970-2005 Source: EU-KLEMS DATABASE
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