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Abstract

Recent industry-based empirical studies among countries exhibit that individual industry’s 

per-capita capital stock and output grow along its own steady state at industry’s own growth 

rate, which is highly correlated to industry’s technical progress measured by the total factor 

productivity of the industry. Let us refer to this phenomenon as “unbalanced growth among 

industries”. Since it is totally based on the highly aggregated macro-production functions, 

“New Growth Theory” cannot explain the unbalanced growth phenomenon. On the other hand, 

although Turnpike Theory is based on the multi-sector models, it demonstrates that all sectors 

have a common growth rate and each sector’s per-capita capital stock and output converge to 

its own constant ratio. Therefore, Turnpike Theory cannot explain the phenomenon either.

I will set up the multi-sector optimal growth model with a sector specific Harrod neutral 

technical progress and show that each sector’s per-capita capital stocks and outputs grow at 

its own rate of sector’s technical progress by applying the theoretical method developed by 

McKenzie and Scheinkman in Turnpike Theory.

JEL Classification: O14, O21, O24, O41

1　Introduction

Since the seminal papers by Romer （1986） and Lucas （1988）, we have witnessed a strong 

revival of interest in Growth Theory under the name of Endogenous Growth Theory, and 

especially, neoclassical optimal growth models have been used as analytical benchmark models, 

which have been intensively studied in late 60’s. However, these research models have a 

serious drawback. Since the models are based on the highly aggregated macro-production 

function, they cannot explain the important empirical evidence, as I will give a detailed 

discussion in the following section. Recent empirical studies at the industry level among 

＊　The paper is prepared for the International Conference on “Globalization, interdependences and 
macroeconomic fluctuations”, held in Paris, June 11-13, 2009. The paper is very preliminay. Please do not quote.
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countries provide a clear evidence that individual industry’s per-capita capital stock and output 

grow at industry’s own growth rate, which is closely related to industry’s technical progress 

measured by the total factor productivity of the industry. For example, the per-capita capital 

stock and output of an agriculture sector grow at 5% per annum along its own steady state, on 

the other hand, those of a manufacturing sector grow at 10% per annum along its own steady 

state. Let us refer to this phenomenon as “unbalanced growth among industries”. To tackle 

the problem, it has raised a strong theoretical demand for constructing a multi-sector growth 

model. In spite of strong needs for such a model, very little study of this type of model has 

been done so far.

On the other hand, the optimal growth model with heterogeneous capital goods has been 

intensively studied under the title of Turnpike Theory since the early 70’s by McKenzie 

（1976, 1982, 1983 and 1986） and Scheinkman （1976）. The Turnpike Theory shows that any 

optimal path asymptotically converges to the corresponding optimal steady state path without 

initial stock sensitivity. In other words, the turnpike property implies that the per-capita 

capital stock and output of each sector eventually converge to a sector specific constant ratio 

at the common growth rate. Therefore, the Turnpike Theory cannot explain the empirical 

phenomenon: unbalanced growth among industries, either. An additional point to notice is that 

the Turnpike result established in the reduced form model, which has not been fully applied 

to a structure model: a neoclassical optimal growth model. One serious obstacle to apply the 

results given in the reduced model is that transforming a neoclassical optimal growth model 

into the reduced model will not yield a strictly concave reduced form utility function, but just 

a concave one. In this context, McKenzie （1983） has extended the Turnpike property to the 

case in which the reduced form utility function is not strictly concave: that is, it has a flat 

on the surface in which an optimal steady state is contained. This flat is often referred to as 

the Neumann-McKenzie facet.Yano （1990） has studied a neoclassical optimal growth model 

with heterogeneous capital goods in a trade theoretic context. However, in the case of the 

Neumann-Mckenzie facet with a positive dimension, Yano made a direct assumption called 

the dominant diagonal block condition concerned with the reduced form utility function （see 

Araujo and Scheinkman （1978） and McKenzie （1986））. Thus he still did not fully exploit the 

structure of the neoclassical optimal growth model, especially the dynamics of the path on the 

Neumann-McKenzie facet to obtain the Turnpike property.

The paper is undertaken to fill the gap between the results derived by the theoretical 

researches explained above and the empirical evidence provided by the recent empirical 

studies at the industry level among countries by way of applying the theoretical method 

developed in Turnpike Theory. I will first set up a multi-sector optimal growth model, where 
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each sector exhibits the Harrod neutral technical progress with a sector specific rate. The 

presented model will be regarded as a multi-sector optimal growth version of the Solow model 

with the Harrod neutral technical progress.

Secondly, I will rewrite the original model into a per-capita efficiency unit model. Then as 

the third step, I will transform the efficiency unit model into a reduced form model. Then 

the method developed in Turnpike Theory are ready to be applicable. I will first establish 

the Neighborhood Turnpike Theorem demonstrated in McKenzie （1983）. The neighborhood 

Turnpike means that any optimal path will be trapped in a neighborhood of the corresponding 

optimal steady state path when discount factors are close enough to one and the neighborhood 

can be made as small as possible by choosing a discount factor arbitrarily close to one. Then, 

I will show the local stability by applying the logic used by Scheinkman （1976）: there exists 

a stable manifold that stretches out over today’s capital stock plane. To demonstrate both 

theorems, the dynamics of the Neumann-McKenzie facet takes an important role, as we will 

see later. Combining the Neighborhood Turnpike and the local stability provides the full 

turnpike property: any optimal path converges to a corresponding optimal steady state when 

the discount factors are close enough to one. For establishing both theorems, we assume the 

generalized capital intensity conditions, which are generalized versions of those of a two-sector 

model. The full turnpike property means that each sector’s optimal per-capita capital stock and 

output converge to its own steady state path with the rate of technical progress determined 

by the sector’s total factor productivity.

The paper is organized in the following manner: In Section 2, I will provide a several 

empirical facts based on the recent database at the industry level among countries. In Section 

3, the model and assumptions are presented and show some existence theorem. In Section 

4, the Neumann-McKenzie facet is introduced and the Neighborhood Turnpike Theorem is 

demonstrated. The results obtained in Section 4 will be used repeatedly in the proofs of main 

theorems. In Section 5, I show the full Turnpike Theorem. Some comments are given in 

Section 6.

2　The Empirical Facts

Over the past few years, a great number of efforts have been done to collect and archive the 

industry level database among countries. Recently such a database is easily accessed on the 

Web: the EU-Klems Growth and Productivity Database⑴, which covers 28 countries with 71 

⑴　URL http://www.euklems.net
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industries from 1970 to 2005. It contains the GDPs and the total factor productivity （TFPs） of 

industries. Growth accounting has been used to analyze economic growth in countries. One of 

the more interesting applications is to the industries. Let us assume the following production 

function of the ith industry in a country.

easily accessed on the Web: the EU-Klems Growth and Productivity Database1, which

covers 28 countries with 71 industries from 1970 to 2005. It contains the GDPs and

the total factor productivity (TFPs) of industries. Growth accounting has been used

to analyze economic growth in countries. One of the more interesting applications is

to the industries. Let us assume the following production function of the ith industry

in a country.

Yi(t) = F
i(K1i(t),K2i(t), · · ··, Kni(t), A

i
tLi(t)),

where Yi : t
th period capital goods output of the ith industry, Kji : i

th capital goods

used in the jth industry in the tth period, Ait : t
th period labor-argumented technical-

progress, and Li(t) : t
th period labor input of the ith industry. If θj stands for

the factor share of the jth input factor, then we may derive the following relation

concerned with the ith industry;

·
Ai
Ai
=

·
Y i

Yi
−
µPn

j=1 θji
·
Kji

Kji
+ θ0i

·
Li
Li

¶

θ0i
.

Based on this equation, we are able to caluculate TFPs of the 20 industries of a

country2. Figures 1 show the relationship between the per-capita U.S. GDP average

growth rate and the U.S. TFP average growth rate at the industry level from 1970 to

1URL http://www.euklems.net
2The U.S. 20 industries are followings:

1:TOTAL INDUSTRIES 2 :AGRICULTURE, HUNTING, FORESTRY AND FISHING
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Based on this equation, we are able to caluculate TFPs of the 20 industries of a country⑵. 

Figures 1 show the relationship between the per-capita U.S. GDP average growth rate and the 

U.S. TFP average growth rate at the industry level from 1970 to 2005. In Figures 2, those of 

the Japanese ecvonomy are exhibited. Note that in both figures, the 45-degree lines are also 

drawn. If an industry were on the 45-degree line, it would imply that the industry’s per-capita 

GDP would grow at its TFP growth rate. Observing Figures 1 and 2, we may conclude that in 

both countries, most of the industries lie around the 45-degrees line. Although some industries 

lie far above or below the 45-degree line.

⑵　The U.S. 20 industries are followings:
　　1: TOTAL INDUSTRIES  2: AGRICULTURE, HUNTING, FORESTRY AND FISHING
　　3: MINING AND QUARRYING  4: TOTAL MANUFACTURING
　　5: FOOD, BEVERAGES AND TOBACCO  6: TEXTILES, TEXTILE , LEATHER AND FOOTWEAR
　　7: WOOD AND OF WOOD AND CORK  8: PULP, PAPER, PAPER , PRINTING AND PUBLISHING
　　9: CHEMICAL, RUBBER, PLASTICS AND FUEL  10: OTHER NON-METALLIC MINERAL
　　11: BASIC METALS AND FABRICATEDMETAL
　　12: MACHINERY, NEC  13: ELECTRICAL AND OPTICAL EQUIPMENT
　　14: TRANSPORT EQUIPMENT 15:MANUFACTURING NEC; RECYCLING
　　16: ELECTRICITY, GAS AND WATER SUPPLY
　　17: CONSTRUCTION  18: WHOLESALE AND RETAIL TRADE
　　19: HOTELS AND RESTAURANTS
　　20: TRANSPORT AND STORAGE AND COMMUNICATION
　　For Japanese Economy, three more extra industries are added.
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We may summarize these facts as follows:

1）  Each industrial sector has its own steady state with the sector specific growth rate.

2）  The steady state level and its growth rate are highly related to its own TFP.

These facts cannot be explained by the new growth theory totally based on the macro 

production function. Thus we need to set up an industry based multi-sector growth model. On 

the other hand, the turnpike theory are established based on the multi-sector model. However 

it has a drawback, too. The turnpike theory means that each industrial sector with different 

initial stocks will eventually converge to its own optimal steady state with the common 

Figure 1: U.S. Economy, 1970-2005 Source: EU-KLEMS DATABASE

Figure 2: Japanese Economy, 1970-2005 Source: EU-KLEMS DATABASE
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balanced growth rate. In other words, each industry’s per capita stock will converges to a 

certain constant ratio. Thus the turnpike theory cannot explain the facts that each industry’s 

per-capita stock grows at its own growth rate, which is determined by the sectoral TFP.

OECD （2003） also studied the productivity growth at the industry level in detail and 

reported the following results, which are consistent with our observations discussed above.

・　 A large contribution to overall productivity growth patterns comes from productivity 

changes within industries, rather than as a result of significant shifts of employment 

across industries.

・　TFP depends on country/industry specific factors.

From the above discussion, it is an urgent task to set up a multi-sector optimal growth 

model with technical progress and demonstrate that each sector’s per-capita capital and output 

will grow at the sectoral specific growth rate determined by the sector’s TFP.

3　The Model and Assumption

Our model is a discrete-time and multi-sector version of the standard neoclassical optimal 

growth model with the Harrod neutral technical progress:

wherei=1, 2, ..., n, t=0, 1, 2, ...., and the notation is as follows:
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C（t）∈ R+  = total consumption goods produced and consu med at t,

Yi（t）∈ R+  = t th period capital goods output of the i th sector,
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Kij(t) = Ki(t), (5)

wherei = 1, 2, ..., n, t = 0, 1, 2, ...., and the notation is as follows:

r = subjective rate of discount, r≥g,

C(t) ∈ R+ = total consumption goods produced and consumed at t,

Yi(t) ∈ R+ = tth period capital goods output of the ith sector,
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Ki(0) ∈ R+ = initial capital stock of the ith sector,

F j(·) : Rn+1+ 7−→ R+ = production function of the jth sector,

Li(t) = tth period labor input of the ith sector,

L(t) = tth period total labor input,

Kij(t) = ith capital goods used in the jth sector

in the tth period,

δi = depreciation rate of the ith capital goods,

given as 0<δi<1,

Ait = tth period labor-argumented technical-progress

of the ith sector.
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K i（t）∈ R+  =t th period capital stock of the i th sector,

K i（0）∈ R+  = initial capital stock of the i th sector,

F j（·）:R+
n+1→ R+ = production function of the j th sector,

L i（t）   =t th period labor input of the i th sector,

L（t）   =t th period total labor input,

K ij（t）=i th capital goods used in the j th sector

　　　  in the tth period,

δi 　 = depreciation rate of the ith capital goods,

　　　  given as 0<δi<1,

A i
t 　 = t th period labor-argumented technical-progress

　　　  of the i th sector.

I maintain the following standard assumptions throughout the paper.

Assumption 1. 1）　L（t）=（1+g）tL（0） where g is a rate of population growth and given as 

0<g<1. 2） A i
t =（1+a i）tA i

0 where ai is a rate of labor argumented technical progress of the i 

th sector and given as 0<a i <1.

2）　of Assumption 1 means that the sectoral TFP is measured by the sectoral labor argumented 

technical progress （the Harrod neutoral technical progress）, which is externally given.

Assumption 2. 1）　All the goods are produced nonjointly with production functions F i （i=1, 

..., n） which are defined on R +
n+1, homogeneous of degree one, strictly quasi-concave and 

continuously differentiable for positive inputs. 2） Any good j （ j=0, 1, ..., n） cannot be produced 

unless K ij >0 for some i =1, ..., n . 3） Labor must be used directly in each sector. If labor input 

of some sector is zero, then its sector’s output is zero.

Dividing all the variables by A i
t, we will transform the original model into percapita 

efficiency unit model. Firstly, let us transform the t th sector’s production function as follows; 

dividing both sides by A i
tL（t）,

I maintain the following standard assumptions throughout the paper.
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Yi(t)

AitL(t)
= F i

µ
K1i(t)

AitL(t)
,
K2i(t)

AitL(t)
, · · ··, Kni(t)

AitL(t)
,
AitLi(t)

AitL(t)

¶
(i = 1, · · · , n).

12Then,
Then,

eyi(t) = f i(ek1i(t),ek2i(t), · · · ,ekni(t), `i(t)) (i = 1, · · · , n)

where eyi(t) = Yi(t)

Ai
tL(t)

,ek1i(t) = K1i(t)

Ai
tL(t)

,ek2i(t) = K2i(t)

Ai
tL(t)

, · · · ,ekni(t) = Kni(t)

Ai
tL(t)

,and `i(t) =

Ai
tLi(t)

Ai
tL(t)

.

Applying the same transformation to the consumption sector, we have also

ec(t) = f0(ek10(t),ek20(t), · · · ,ekn0(t), `0(t)).

Furthermore, we may also transform the tth sector’s accumulation equation as

followas; dividing both sides by AitL(t),

Yi(t)

AitL(t)
+ (1− δi)

Ki(t)

AitL(t)
− Ki(t+ 1)

AitL(t)
= 0

Note the following relation:

Ki(t+ 1)

AitL(t)
=
(1 + ai)(1 + g)Ki(t+ 1)

[(1 + ai)Ait][(1 + g)L(t)]
= (1 + ai)(1 + g)eki(t+ 1).

Then we have nally,

eyi(t) + (1− δi)eki(t)− (1 + ai)(1 + g)eki(t+ 1) = 0.

In a vector form expression,

ey + (I−∆)ek(t)− (1 + g)Gek(t+ 1) = 0

13
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ey + (I−∆)ek(t)− (1 + g)Gek(t+ 1) = 0, (8)

nX
i=0

`i(t) = 1, (9)

nX
i=0

ekij(t) = ekj(t) (j = 1, · · · , n). (10)

We may add the following assumption and prove the basic property, Lemma 1;

Assumptin 3. 0 < ρ < 1.

Lemma 1. Under Assumption 2, Eqs.(6)-(10) except Eq.(8) are summarized as the

social production function ec(t) = T (ey(t), ek(t)) which is continuously differen-

tiable on the interior R2n
+ and concave where ey(t) = (y1(t), y3(t), · · · , yn(t)) and

ek(t) = (k1(t), k2(t), · · · , kn(t)).

Proof.

See Benhabib and Nishimura (1979).
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If x～  and z～ stand for initial and terminal capital stock vectors respectively, then the reduced 

form utility function V （x～ , z～） and the feasible set D can be defined as follows:

If ex and ez stand for initial and terminal capital stock vectors respectively, then

the reduced form utility function V (ex,ez) and the feasible set D can be dened as

follows:

V (ex,ez) = T [(1 + g)Gez− (I−∆)ex, ex]

and

D = {(ex,ez) ∈ Rn+ ×Rn+ : T [(1 + g)Gez− (I−∆)ex, ex] ≥ 0}

where ex = (ex1(t), ex2(t), · · · , exn(t)), ez = (ek1(t+1),ek2(t+1), · · · ,ekn(t+1)) and

I is an n-dimensional unit matrix.

Finally, the above optimization problem will be summarized as the following stan-

dard reduced form problem, which is familiar in the Turnpike Theory:

Reduced Form Model

Maximize
P∞

t=0 ρ
tV (ek(t), ek(t+ 1))

subject to (ek(t), ek(t+ 1)) ∈ D for t ≥ 0 and ek(0) = k.

Also note that any interior optimal path must satisfy the following Euler Equa-

tions, showing an intertemporal efficiency allocation:

Vz(ek(t− 1), ek(t)) + ρVx(ek(t), ek(t+ 1)) = 0 for all t ≥ 0 (11)
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Vz(ek(t− 1), ek(t)) + ρVx(ek(t), ek(t+ 1)) = 0 for all t ≥ 0 (11)
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and 0 means an n dimensional zero column vector. “ t ” implies transposition of

vectors. Note that under the differentiability assumptions, all the price vectors will

satisfy the following relations:

q = ∂ec/∂ec = 1,

pi = −q∂T (ey, ek)/∂eki (i = 1, 2, · · · , n),

wi = q∂T (ey, ek)/∂eki (i = 1, 2, · · · , n).

w0 = qec+ pey−wek

Using these relation, we may dene the price vectors of capital goods as (n × 1)

row vector p = (p1, p2, · · · , pn), the output of capital goods as ( n× 1) vector ey =

(ey1, ey2, · · · , eyn)t, the rental rate as (1× n) row vector w = (w1, w2, · · · , wn) and the

capital stock as (n × 1)vector ek = (ek1,ek2, · · · ,ekn)t. w0 is a wage rate. For simlicity

we may assume that all the price vectors (p,w,w0) are expressed as the relative price

vectors of the price of the consumption good q.

Denition. An optimal steady state path kρ (denoted by OSS henceforth) is an
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Using these relation, we may define the price vectors of capital goods as （n×1） row vector 

p=（p1, p2, ..., pn）, the output of capital goods as （n×1） vector y～ =（y～ 1, y
～

2, ..., y
～

n）t, the rental 

rate as （1×n） row vector w=（w1, w2, ...,wn） and the capital stock as （n×1） vector k
～
=（k

～

1, k
～

2, 

..., k
～

n）t. w0 is a wage rate. For simlicity we may assume that all the price vectors （p, w, w0） 

are expressed as the relative price vectors of the price of the consumption good q.

Definition. An optimal steady state path kρ （denoted by OSS henceforth） is an optimal path 

which solves the above optimization problem and k
～ρ=k

～
（t）=k

～
（t+1） for all t≥0.

Due to the homogenety assumption of each sector’s production, it is often convenient to express 

a chosen technology as a technology matrix. Let us define the technology matrix as follows:
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optimal path which solves the above optimization problem and ekρ = ek(t) =
ek(t+ 1) for all t ≥ 0.

Due to the homogenety assumption of each sector’s production, it is often con-

venient to express a chosen technology as a technology matrix. Let us dene the

technology matrix as follows:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a00 · · · a0n

a10

... A

an0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝
a00 a0.

a.0 A

⎞
⎟⎟⎠

where a0i = èi/eyi (i = 0, · · · , n), aij = ekij/eyj (i = 1, · · · , n; j = 0, 1, · · · , n) and

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 · · · a1n

...
...

an1 · · · ann

⎞
⎟⎟⎟⎟⎟⎟⎠
.

It directly follows that Assumption 2 implies that for all j = 0, 1, · · · , n, aij > 0

for some i = 1, · · · , n and a0i > 0 for all i. We make rst the following assumption

in terms of the technology matrix to show the existence theorem.

Assumption 4. (Viability) For a given r (≥ g),a chosen technology matrix A satis-

es
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It directly follows that Assumption 2 implies that for all j=0, 1, ..., n, aij>0 for some i=1, 

..., n and a0i>0 for all i. We make first the following assumption in terms of the technology 

matrix to show the existence theorem.

Assumption 4. （Viability） For a given r （≥  g）, a chosen technology matrix A
―
 satisfies

[I− (rI+∆)A
r
]−1 ≥ Θ

where Θ is a n× n zero matrix3.

By the well known equivalence theorem of the Hawkins-Simon condition and The-

orem 4 of Mckenzie (1960), Assumption 4 is equivalent to the property that the matrix

[I− (rI + ∆)A
r
] has a dominant diagonal that is positive; there exists y ≥ 0 such

that [I− (rI+∆)A
r
]y ≥ 0.

We need the following extra assumption.

Assumption 5. 1 > a0 > max
i=1,...,n

|ai|

Remark 1 The assumption means that the TFP growth rate of the consumption

sector is the highest among those of sectors. Takahashi, Mashiyama and Sakagami

(2004) reported that in the postwar Japanese economy, the consumption sector has

exhibited a higer per-capita output growth rate than that of the capital goods sector

in a two-sector model. If the TFP growth rate has a positive correlation with the

per-capita sectoral GDP growth rate, this fact will partially support Assumption 5.

3Let A and Θ be n-dimentional square matrix and n-dimensional zero matrix. Then AÀ Θ if

aij > 0 for all i, j, A > Θ if aij ≥ 0 for all i, j and aij > 0 for some i, j and A ≥ Θ if aij ≥ 0 for all

i, j.
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where Θ is a n×n zero matrix⑶.

By the well known equivalence theorem of the Hawkins-Simon condition and Theorem 4 of 

Mckenzie （1960）, Assumption 4 is equivalent to the property that the matrix ［I－（rI+Δ）A
―r］ 

has a dominant diagonal that is positive; there exists y≥0 such that ［I－（rI+Δ）A
―r］≥0.

We need the following extra assumption.

Assumption 5. 1>a0>max｜ai｜
　　　　　　　　　　　　　 i=1, ..., n

Remark 1　The assumption means that the TFP growth rate of the consumption sector is the 

highest among those of sectors. Takahashi, Mashiyama and Sakagami （2004） reported that 

in the postwar Japanese economy, the consumption sector has exhibited a higer per-capita 

output growth rate than that of the capital goods sector in a two-sector model. If the TFP 

growth rate has a positive correlation with the per-capita sectoral GDP growth rate, this fact 

will partially support Assumption 5.

⑶　Let A and Θ be n-dimentional square matrix and n-dimensional zero matrix. Then A≫Θ if aij>0 for all i, j, 
A>Θ if aij≥0 for all i, j and aij>0 for some i, j and A≥Θ if aij≥0 for all i, j.



研　究　所　年　報12

McKenzie （1983, 1984） has shown that the existence of an optimal path and OSS in the reduced 

form model. Actually we can prove the following existence theorem under Assumptions 1 through 5.

Existence Theorem: Under Assumptions 1 through 5, there exists an optimal steady state path 

k
～ρ for ρ∈（0, 1］ and an optimal path ｛k

～ρ（t）｝∞ from any sufficient initial stock vector k
～
（0）⑷.

Proof. We need to show that under Assumptions 1 through 3, all the conditions⑸ in Theorem 1 

of McKenzie （1983） or in the existence theorem of McKenzie （1984） are satisfied. Especially, 

Assumption 4 and the additional condition are needed to guarantee the non-emptiness of 

the interior of D （Condition 5） in the footnote） as we will demonstrate as follows; from 

the Condition 5）, there is an output vector y≥0 such that ［I－（rI+Δ）A
―r］≥0. By a scalar 

multiplication of y, we can establish x∧=Ary∧ where x∧=（1, x―）t and y∧=（c, y―）. Note that the 

equality of the first elements of x∧ and Ary∧ will provide Eq. （9）; the full employment condition. 

Since the labor constraints are satisfied for y∧ and that A
―r is a submatrix of Ar, it follows that 

x―=A
―ry∧ holds.

bx = Arby where bx = (1,x)t and by = (c,y). Note that the equality of the rst

elements of bx and Arby will provide Eq. (9); the full employment condition. Since

the labor constraints are satised for by and that Ar
is a submatrix of Ar, it follows

that x = A
r
y holds.

z− ρ−1x =

µ
1

1 + g

¶
G−1

©
I + [I−∆− (1 + g)Gρ−1]A

rª
y

=

µ
1

1 + g

¶
G−1I + I−∆− (1 + g)

⎛
⎜⎜⎜⎜⎜⎜⎝

(1 + a1) 0

. . .

0 (1 + an)

⎞
⎟⎟⎟⎟⎟⎟⎠

∙
(1 + r)

(1 + g)(1 + a0)

¸¸
A
r
¾
y

=

µ
1

1 + g

¶
G−1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I +

⎡
⎢⎢⎢⎢⎢⎢⎣
I−∆− (1 + r)

⎛
⎜⎜⎜⎜⎜⎜⎝

(1+a1)
(1+a0)

0

. . .

0 (1+an)
(1+a0)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎦
A
r

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

y

≥
µ

1

1 + g

¶
G−1

©
I + [I−∆− (1 + r)I]Arª

y due to Assumption 5,

=

µ
1

1 + g

¶
G−1[I−(rI+∆)]Ar

y > 0 from Assumption 4,

Therefore y will be chosen so that z− ρ−1x ≥ 0 where (x, z)εD. See also Lemma 3

through Lemma 7 in Takahashi (1985).

Remark 2 It should be noted that since ekρi = kρi (t)

Ai
tLt
, it follows that kρi (t) =

ekρiAit =
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⑷　A capital stock x is called sufficient if there is a finite sequence （k（0）, k（1）, ..., k（T）） where x=k（0）, （k（t）, 
k（t+1）） ∈ D and k（T） is expansible. k（T） is expansible if there is k（T+1） such that k（T+1）≫k（T） and （k（T）
, k（T+1））∈ D. Note that the sufficiency will be assured by assuming “Inada-type” condition on the production 
functions.
⑸　McKenzie’s conditions are followings: 1） V（x, z） are defined on a convex set D. 2） There is a η>0 such 
that （x, z）∈ D and｜z｜<ξ<∞ implies｜z｜<η<∞. 3） If （x, z）∈ D, then （x～, z～）∈ D for all x～≥x and 0≤z～≤z. 
Moreover V（x～, z～）≥V（x, z）. 4） Ther is ζ>0 such that｜x｜≥ζimplies for any （x, z）∈D,｜z｜<λ｜x｜where 0<
λ<1. 5） There is （x―, z―）∈D such that ρz―>x―.
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Therefore y― will be chosen so that z―－ρ－1x―≥0 where （x―, z―）εD. See also Lemma 3 through 

Lemma 7 in Takahashi （1985）.

Remark 2 It should be noted that since k
～ρ

i= , it follows that kρi（t）=k
～ρ

i Ai
t=（1+ai）tAi

0k
～ρ

i for 

i=1, ..., n. Thus the original series of the industry’s optimal per-capita stock k
～ρ

i（t） is growing 

at the rate of its own sector’s technical progress, （1+ai）. From now on, to avoid further 

complications of our nortation, all the variables measured in efficiency unit will be denoted 

without the simbol “～” unless otherwise mentioned.

Suppose that kρ is an interior OSS in efficiency uite with a given ρ, then it must satisfy the 

Euler equations:

(1 + ai)
tAi0
ekρi for i = 1, · · · , n. Thus the original series of the industry’s optimal

per-capita stock kρi (t) is growing at the rate of its own sector’s technical progress,

(1+ai). From now on, to avoid further complications of our nortation, all the variables

measured in efficiency unit will be denoted without the simbol ”e” unless otherwise

mentioned.

Suppose that kρ is an interior OSS in efficiency uite with a given ρ, then it must

satisfy the Euler equations:

Vz(k
ρ,kρ) + ρVx(k

ρ,kρ) = 0. (12)

Due to the above denition of OSS, we will express the partial derivatives of the

Euler equations in terms of price vectors:

Vx(k
ρ,kρ) = pρ(I−∆) +wρ

Vz(k
ρ,kρ) = −(1 + g)Gpρ.

where I is a n× n unit matrix. Substituting these relations into the Euler equations

may yield the followings:

ρ[wρ + pρ(I−∆)]− (1 + g)Gpρ = 0 (13)
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and further calculation will finally yield:and further calculation will nally yield:

pρ
∙
−I+∆+

µ
1 + r

1 + a0

¶
G

¸
= wρ.

These are clearly non-arbitrage conditions among capital goods and imply that

any capital good must yield the same rate of returns as the subjective discount rate

ρ. Thus the Euler conditions are the non-arbitrage conditions.

Because of the differentiability and the constant returns to scale technologies,

the well-known proposition proved by Samuelson (1945) will hold: the cost function

denoted by Ci(w0,w
ρ) (i = 1, · · · , n) is homogeneous of degree one and ∂Ci/∂wj =

aij where aij = kij/yj (i = 1, 2, · · · , n; j = 0, 1, · · · , n). Due to the cost minimization

condition and this property, a unique technology matrix Aρ is chosen along the OSS

kρ. Also note that due to Assumption 3, for a given ρ ∈ (0, 1], the uniquely chosen

technology matrix A
ρ
along the OSS kρ have to satisfy,

[I− (rI+∆)A
ρ
]−1 ≥ Θ.

Furthermore it follows that aρ00 > 0 and a
ρ
0. À 0 from Assumption 2. Henceforth, we

use the symbol ”ρ” to clarify that vectors and matrices are evaluated along OSS kρ.

Conbining these results, the following important property will be established:

Lemma 2. When ρ ∈ (0, 1] , there exists a unique OSS (kρ À 0)6 with the

6Let x and y be n-dimensional vectors. Then xÀ y if xi > yi for all i, x > y if xi ≥ yi for all i

and at least one j, xi > yi and x ≥ y if xi ≥ yi for all i.
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Remark 2 It should be noted that since ekρi = kρi (t)

Ai
tLt
, it follows that kρi (t) =

ekρiAit =
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uniquely chosen technology matrix A
―ρ along the OSS kρ have to satisfy,

and further calculation will nally yield:

pρ
∙
−I+∆+

µ
1 + r

1 + a0

¶
G

¸
= wρ.
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the cost-minimization condition and the full-employment condition will be expressed as follows:
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and Grahm (1975).
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⎞
⎟⎟⎠ .
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24And the nonsingularity of bρ comes from the following observation: From Murata （1977）, bρ=

［aρ－（1/aρ00）aρ·0aρ0·］－1. Furthermore, by Gantmacher （1960）, it also follows that det Aρ=aρ00det

［aρ·0aρ0·］. Since Aρ is non-singular, the result follows.

⑹　Let x and y be n-dimensional vectors. Then x≫y if xi>yi for all i, x>y if xi≥yi for all i and at least one j, 
xi>yi and x≥y if xi≥yi for all i.
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From now on, we are concentrated on the OSS with ρ=1 denoted by k＊. We will also use 

“＊” to denote the elements and variables are evaluated at k＊.

Definition. When ρ=1, the chosen technology matrix A＊ satisfies the Generalized Capital 

Intensity GCI-I condition, if there exists a set of positive number （d1, ..., dn） such that

And the nonsingularity of bρ comes from the following observation: From Murata

(1977), bρ = [aρ−(1/aρ00)aρ·0aρ0·]−1. Furthermore, by Gantmacher (1960), it also follows

that det Aρ = aρ00det[a
ρ − (1/aρ00)aρ·0aρ0·]. Since Aρ is non-singular, the result follows.

From now on, we are concentrated on the OSS with ρ = 1 denoted by k∗. We will

also use “ ∗ ” to denote the elements and variables are evaluated at k∗.

Denition. When ρ = 1, the chosen technology matrix A∗ satises the Generalized

Capital Intensity GCI -I condition, if there exists a set of positive number

(d1, · · · , dn) such that

ds(
a∗ss
a∗0s
− a

∗
s0

a∗00
) >

nX
i6=s,0

di

¯̄
¯̄a∗si
a∗0i
− a

∗
s0

a∗00

¯̄
¯̄ for s = 1, · · · , n.

Similarly, the technology matrix A∗ satises the Generalized Capital Intensity

GCI -II condition, if there exists a set of positive number (d1, · · · , dn) such that

a∗ss
a∗0s
− a

∗
s0

a∗00
< 0

and

ds

¯̄
¯̄a∗ss
a∗0s
− a

∗
s0
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¯̄
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nX
i6=s,0

di

¯̄
¯̄a∗si
a∗0i
− a

∗
s0

a∗00

¯̄
¯̄ for s = 1, · · · , n.

Consider a capital good sector s, and focus on its own capital input s and its

capital-labor ratio in all the other sectors. By the denition the left-hand side of
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Consider a capital good sector s, and focus on its own capital input s and its capital-labor 

ratio in all the other sectors. By the definition the left-hand side of the GCI-I condition means 

the excess of the capital-labor ratio of capital input s for the capital good sector s. The right-

hand side collects the absolute values of the discrepancy between the capital-labor ratio of 

other sectors （i≠s, 0） to that of the consumption sector. The GCI-I condition points that the 

sum of such absolute values still fall short of the the excess of a＊ss/a＊0s over the comparable 

ratio in the consumption sector, a＊ss/a＊0s. We may give a similar explanation to the GCI-II 

condition.

The following lemma can be directly derived from the definition of the both intensity 

conditions.

Lemma 3. If the technology matrix A＊ satisfies the GCI-I （GCI- II condition） condition, its 

inverse matrix B＊ has positive （negative） diagonal ellements and negative （positive） off-

diagonal elements.

Proof. From the theorem by Jones et al. （1993）, under the Strong GCI-II, its inverse matrix 

has negative diagonal and positive off-diagonal elements. On the other hand, under the Strong 

CGI-I, by considering the case where one price falls with all the other prices constant in their 

proof, their exact logic can be applicable and the first result will be derived.

Due to Lemma 3, we may prove the following important lemma.

Lemma 4. Under the Strong GCI-I （the Strong GCI-II）, ［b＊－（（1+g）G+Δ－I）］ has a dominant 

diagonal that is positive （negative） for rows⑺.
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Proof. Due to Lemma 3, under the Strong GCI-I （the Strong GCI-II）, the inverse matrix B＊ has 

positive （negative） diagonal elements and negative （positive） offdiagonal elements. From the 

accumulation equation y＊=（1+n）Gk＊－（I－Δ）k＊ and y＊ =b＊k＊+b＊. it follows that

has a dominant diagonal that is positive (negative) for rows7.

Proof. Due to Lemma 3, under the Strong GCI-I (the Strong GCI-II), the inverse

matrix B∗ has positive (negative) diagonal elements and negative ( positive) off-

diagonal elements. From the accumulation equation y∗ = (1 + n)Gk∗ − (I−∆)k∗

and y∗ = b∗k∗ + b∗.0, it follows that

[b∗ − ((1 + g)G+∆− I)]k∗ = −b∗.0

Due to Lemma 3, −b∗.0 < (>)0. Theirfore the matrix [b∗ − ((1 + g)G+∆− I)] has

the negative (positive) dominant diagonal for rows.

From now on we may call the dominant diagonal that is negative as the n.d.d.

and also call the dominant diagonal that is positive as the p.d.d. for short.

From the Euler equations (12), its Jacobian J(k, ρ) is

J(k, ρ) = ρVxx(k,k) + ρVxz(k,k) +Vzx(k,k) +Vzz(k,k),

which at k∗ is

J(k, 1) = Vzz(k
∗,k∗) +Vxz(k

∗,k∗) +Vzx(k
∗,k∗) +Vxx(k

∗,k∗)

7Suppose A is an n×n matrix and its diagonal elements are negative (positive). Let there exist

a positive vector h such that hi | aii |>
Pn

j=1,j 6=i hj | aij |, i = 1, 2, · · · , n. Then A is said to have

a dominant main diagonal that is negative (positive) for rows. See McKenzie (1960) and Murata

(1977).
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(1977).
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where all matrices are evaluated at k＊⑻. We will show the following important lemma, which 

is corresponding to Lemma 2.5 of Takahashi （1992）.

Lemma 5. Suppose that either of the GCI conditions hold. Then there exists a positive scalar 

ρ―  such that for ρ∈［ρ― , 1］, the OSS kρ is unique and is a continuous vector-value function of 

ρ, namely kρ=k（ρ）.

Proof. If detJ（k＊, 1）≠0 holds, then due to the Implicit Function Theorem, the result follows. 

To show this we will use the following fact shown in Benhabib and Nishimura （1979）:

where all matrices are evaluated at k∗8. We will show the following important lemma,

which is corresponding to Lemma 2.5 of Takahashi (1992).

Lemma 5. Suppose that either of the GCI conditions hold. Then there exists a

positive scalar ρ such that for ρ ∈ [ρ, 1], the OSS kρ is unique and is a continuous

vector-value function of ρ, namely kρ = k(ρ) .

Proof. If detJ(k∗, 1) 6= 0 holds, then due to the Implicit Function Theorem, the

result follows. To show this we will use the following fact shown in Benhabib and

Nishimura (1979):

T1 = [∂T/∂y] = −p, T2 = [∂T/∂k] = w

where p is an output price vector. Differentiating both price vectors with resoect to

y and k again will yield the following second-order partial derivative matrices:T11 =

[−∂p/∂y], T12 = [−∂p/∂k], T21 = [∂w/∂y] and T22 = [∂w/∂k].Also note that if

the matrices are evaluated at k∗, then from the previous equation,

[∂p/∂w] = (b∗)−1

and due to the symmetry of the Hessian matrix of c(t) = T (y(t),k(t)),

[∂p/∂k] = −[∂w/∂y]t
8We use the following notational convention for the partial derivative matrices:Vxx =

[∂2V(x, z)/∂x2],Vxz = [∂2V(x, z)/∂x∂z] and Vzz = [∂2V(x, z)/∂z
2
]. Note that each matrix is

an n× n matrix.
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⑺　Suppose A is an n×n matrix and its diagonal elements are negative （positive）. Let there exist a positive 
vector h such that hi｜aii｜>Σn

j=1, j≠ihj｜aij｜, i=1, 2, ..., n. Then A is said to have a dominant main diagonal that 
is negative （positive） for rows. See McKenzie （1960） and Murata （1977）.
⑻　We use the following notational convention for the partial derivative matrices: Vxx=［∂

2V（x, z）/∂x2］, Vxz=
［∂2V（x, z）/∂x∂z］and Vzz =［∂

2V（x, z）/∂z2］. Note that each matrix is an n×n matrix.
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where the suffix “' ” means a transpose of a matrix. Utilizing these relations, all the partial 

derivative matrices at k＊ can be expressed in terms of the matrices b＊ and T22 as follows: 

T11=（b＊）－1T t
22（b＊）－1=（b＊）－1T22（b＊）－1, T12=－（b＊）－1T22, and T21=－T22（b＊）－1. Substituting 

Yx=（gI+Δ） and Yz= I into Eq.（2.22） of Takahashi （1985）, the Jacobian will be expressed as 

follows:

where the suffix ”0” means a transpose of a matrix. Utilizing these relations, all the

partial derivative matrices at k∗ can be expressed in terms of the matrices b∗ and

T22 as follows: T11 = (b
∗)−1Tt22(b

∗)−1 = (b∗)−1T22(b
∗)−1, T12 = −(b∗)−1T22, andT21 =

−T22(b
∗)−1.Substituting Yx = (gI+∆) and Yz = I into Eq.(2.22) of Takahashi

(1985), the Jacobian will be expressed as follows:

J(k∗, 1) = [(1 + g)G+∆− I, I]

⎛
⎜⎜⎝
T11 T12

T21 T22

⎞
⎟⎟⎠

⎛
⎜⎜⎝
(1 + g)G+∆− I

I

⎞
⎟⎟⎠ .

If the righthand side is negative denite, then the proof will be completed. Substitut-

ing all the relations obtained before into the Hessian matrix of the social production

function and suppose that the matrix b∗ is nonsingular, then we may yield the fol-

lowing equation:

[(1 + g)G+∆− I, I]

⎛
⎜⎜⎝
T11 T12

T21 T22

⎞
⎟⎟⎠

⎛
⎜⎜⎝
(1 + g)G+∆− I

I

⎞
⎟⎟⎠

= ((1 + g)G+∆− I)T11((1 + g)G+∆− I)

+((1 + g)G+∆− I)T21 +T12((1 + g)G+∆− I) +T22

= [b∗ − ((1 + g)G+∆− I)]2[(b∗)−1]2T22.

Due to Lemma 4, the matrix [b∗ − ((1 + g)G+∆− I)] has the negative (positive)

d.d. from the GCI conditions and it must be nonsingular. b∗ is also nonsingular. T22
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Due to Lemma 4, the matrix ［b＊（（1+g）G+Δ－I）］ has the negative （positive） d.d. from the 

GCI conditions and it must be nonsingular. b＊ is also nonsingular. T22 is negative definite and 

nonsingular due to the argument of Benhabib and Nishimura （1979, pp68-69）. Furthermore, 

the first two matrices are symmetric and therefore all the elements are positive.Thus the 

above matrix is negative definite and the proof is completed.

From this lemma, it follows that all the price vectors pρ, wρ, and the technology matrix Aρ 

are continuous vecto-value functions of ρ∈［ρ' , 1］.

4　The Neumann-McKenzie Facet

Now we will introduce the Neumann-McKenzie Facet （NMF for short）, which plays an 

important role in stability arguments regarding neoclassical growth models as studied in 
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Takahashi （1985） and Takahashi （1992） and has been intensively studied by L. McKenzie （see 

especially McKenzie （1983））. The NMF will be defined in the reduced form model as follows:

Definition. The Neumann-McKenzie Facet of an OSS, denoted by F（kρ, kρ）, is defined as:

is negative denite and nonsingular due to the argument of Benhabib and Nishimura

(1979,pp68-69). Furthermore, the rst two matrices are symmetric and therefore all

the elements are positive.Thus the above matrix is negative denite and the proof is

completed.

From this lemma, it follows that all the price vectors pρ, wρ, and the technology

matrix Aρ are continuous vecto-value functions of ρ ∈ [ρ0, 1].

4 The Neumann-McKenzie Facet

Now we will introduce the Neumann-McKenzie Facet (NMF for short), which plays

an important role in stability arguments regarding neoclassical growth models as

studied in Takahashi (1985) and Takahashi (1992) and has been intensively studied

by L. McKenzie (see especially McKenzie (1983)). The NMF will be dened in the

reduced form model as follows:

Denition. The Neumann-McKenzie Facet of an OSS, denoted by F(kρ,kρ), is de-

ned as:

F(kρ,kρ) = {(x, z) ∈ D : c+ ρpρz− pρx = cρ + ρpρkρ − pρkρ},

where kρ is an OSS and pρ is a supporting price of kρ when the subjective discount

rate r is given.
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where kρ is an OSS and pρ is a supporting price of kρ when the subjective discount rate r is 

given.

From the definition above, the NMF is a set of （x, z） capital stock vectors which arise from 

the exact same net benefit as that of OSS when it is evaluated by the prices of OSS. Also, 

the VMF is the projection of a flat on the surface of the utility function V that is supported 

by the price vector （－pρ, ρpρ, 1） onto the （x, z）-space. In Takahashi （1985）, I consider 

the case of the objective function where n capital goods as well as pure-consumption goods 

are also consumable. Here, the capital goods are not consumable but the discounted sum of 

the sequence of pure-consumption goods is directly evaluated. Due to the well-established 

Nonsubstitution Theorem, along the OSS, a unique technology matrix Aρ defined before will be 

chosen.

By exploiting this fact, we will re-characterize the VMF as a more tractable formula with 

the （n+1） by （n+1） matrix Aρ and （n+1）-dimensional vectors as follows:

Lemma 6. When Aρ is non-singular, （x, z）∈ F（kρ, kρ） if and only if there exists y∧≡（c, y）' =0 

such that

From the denition above, the NMF is a set of (x, z) capital stock vectors which

arise from the exact same net benet as that of OSS when it is evaluated by the

prices of OSS. Also, the VMF is the projection of a at on the surface of the utility

function V that is supported by the price vector (−pρ, ρpρ, 1) onto the (x, z)-space. In

Takahashi (1985), I consider the case of the objective function where n capital goods

as well as pure-consumption goods are also consumable. Here, the capital goods are

not consumable but the discounted sum of the sequence of pure-consumption goods

is directly evaluated. Due to the well-established Nonsubstitution Theorem, along

the OSS, a unique technology matrix Aρ dened before will be chosen.

By exploiting this fact, we will re-characterize the VMF as a more tractable for-

mula with the (n+1) by (n+1) matrix Aρ and (n+1)-dimensional vectors as follows:

Lemma 6. When Aρ is non-singular, (x, z) ∈ F(kρ,kρ) if and only if there exists

by ≡ (c,y)0 = 0 such that

i) bx = Aρby

ii) bz =

µ
1

1 + n

¶
G
−1
[by+ (I−∆)]bx
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where bx = (1,x),bz = (1, z),G−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0

0 1
(1+a1)

...

...
. . . 0

0 · · · 0 1
(1+an)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

∆ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0

0 δ1
...

...
. . . 0

0 · · · 0 δn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and I is a (n+ 1)-dimensional unit matrix.

Proof. From the denition of the NMF, we have the following supporting relation:

c+ ρpρz− pρx = cρ + ρpρkρ − pρkρ

where c and y correspond to (x, z). Furthermore, from the fact that Vx(k
ρ,kρ) =

wρ + pρ(I−∆) and Vz(k
ρ,kρ) = −(1 + g)Gpρ, the Euler equation implies that

wρ = pρ[ρ−1(1+g)G− (I−∆)]. Also note that from the accumulation relations, z =

(1/(1 + g))G−1[y+(I−∆)x] and kρ = (1/(1 + g))G−1[yρ+(I−∆)kρ]. Substituting

theses into the above supporting equation, we nally obtain,

(c− cρ) + ρ

µ
1

1 + g

¶
G−1{[pρy−wρx]− [pρyρ −wρkρ]} = 0. (14)

If {[pρy − wρx] − [pρyρ − wρkρ]} 6= 0, then the second term turns out to be a

vector. This implies that the above equality never holds. Therefore it follows that

32
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where c and y correspond to （x, z）. Furthermore, from the fact that Vx（kρ, kρ）=wρ+pρ（I－Δ） 

and Vz（kρ, kρ）=－（1+g）Gpρ, the Euler equation implies that wρ=pρ［ρ－1（1+g）G－（I－Δ）］. 

Also note that from the accumulation relations, z=（1/（1+g））G－1［y+（I－Δ）x］ and kρ=（1/

（1+g））G－1［yρ+（I－Δ）kρ］. Substituting theses into the above supporting equation, we finally 

obtain,

where bx = (1,x),bz = (1, z),G−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0

0 1
(1+a1)

...

...
. . . 0

0 · · · 0 1
(1+an)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

∆ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0

0 δ1
...

...
. . . 0

0 · · · 0 δn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and I is a (n+ 1)-dimensional unit matrix.

Proof. From the denition of the NMF, we have the following supporting relation:

c+ ρpρz− pρx = cρ + ρpρkρ − pρkρ

where c and y correspond to (x, z). Furthermore, from the fact that Vx(k
ρ,kρ) =

wρ + pρ(I−∆) and Vz(k
ρ,kρ) = −(1 + g)Gpρ, the Euler equation implies that

wρ = pρ[ρ−1(1+g)G− (I−∆)]. Also note that from the accumulation relations, z =

(1/(1 + g))G−1[y+(I−∆)x] and kρ = (1/(1 + g))G−1[yρ+(I−∆)kρ]. Substituting

theses into the above supporting equation, we nally obtain,

(c− cρ) + ρ

µ
1

1 + g

¶
G−1{[pρy−wρx]− [pρyρ −wρkρ]} = 0. (14)

If {[pρy − wρx] − [pρyρ − wρkρ]} 6= 0, then the second term turns out to be a

vector. This implies that the above equality never holds. Therefore it follows that
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If ｛［pρy－wρx］－［pρyρ－wρkρ］｝≠0, then the second term turns out to be a vector. This 

implies that the above equality never holds. Therefore it follows that ｛［pρy－wρx］－［pρyρ－

wρkρ］｝=0 and c=cρ. Thus it finally yields that
{[pρy−wρx]− [pρyρ −wρkρ]} = 0 and c = cρ. Thus it nally yields that

c+ pρy−wρx = cρ + pρyρ −wρkρ.

This result is Condition i), which implies that (c0,y,x) should lie on the production

frontier of T (y,k) and in each sector, the chosen technology must be the same as

that in the OSS. In other words, the OSS technology matrix Aρ will be chosen. Thus

on the NMF, the exact same technology matrix as the corresponding OSS is chosen.

In other words, given OSS technology matrix Aρ, the cost minimization and the

full-employment conditions for labor and capital goods are satised. Therefor, the

following equations must hold:

1)qρ = wρ
0a

ρ
00 +w

ρaρ·0,

2) pρ = wρ
0a

ρ
0· +w

ρaρ,

3)1 = aρ00c+ a
ρ
0·y,

4) x = aρ·0c+ a
ρy

The cost-minimization conditions 1) and 2) imply that the same technology as that

of OSS is chosen. 3) and 4) means that, under the chosen technology, the full employ-

ment conditions hold. It is not difficult to see that 3) and 4) can be summarized as

Condition ii). From these conditions, it follows that c(t) > 0 and y(t)À 0 for all t,

respectively. Condition ii) are the (n+1)-dimensional capital accumulation equations

and z is determined through this relation.
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The cost-minimization conditions 1） and 2） imply that the same technology as that of OSS is 

chosen. 3） and 4） means that, under the chosen technology, the full employment conditions 

hold. It is not difficult to see that 3） and 4） can be summarized as Condition ii）. From these 

conditions, it follows that c（t）>0 and y（t）≫0 for all t, respectively. Condition ii） are the （n+1）

-dimensional capital accumulation equations and z is determined through this relation.

Note that the dynamics of the NMF is expressed by the accumulation equation of Condition 

ii）. We will rewrite it using the element of the inverse matrix of Aρ as follows: first note that 

bρ=［aρ－（1/aρ00）aρ.0aρ0.］－1. Solving Condition ii） with respect to y, we will obtain

Note that the dynamics of the NMF is expressed by the accumulation equation

of Condition ii). We will rewrite it using the element of the inverse matrix of Aρ as

follows: rst note that bρ = [aρ− (1/aρ00)aρ.0aρ0.]−1. Solving Condition ii) with respect

to y, we will obtain

y = bρx+ bρ·0.

Substituting this into the accumulation equation ii) and solving it with respect to z

yields

z = (1/(1 + g))(bρ + I−∆)x− ((1/(1 + g))bρ·0.

Dening η(t) = (x− kρ) and η(t+1) = (z− kρ), we will nally obtain the following

difference equations, which show the dynamics of the NMF:

η(t+ 1) = (
1

1 + g
)[(bρ)−1 + I−∆]η(t). (15)

It is important to notice that the dimension of the NMF could be zero. The

following lemma will give us an exact order of its dimension.

Lemma 7. dim F(kρ,kρ) = n and F(kρ,kρ) ⊂ int D .

Proof. Let us dene d = (d0,d1, · · · , dn)t ∈ Rn+1
+ such that

Pn
i=0 a0idi = 0 holds.

Because the linear constraint must be satised, we can exactly choose n linearly
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Substituting this into the accumulation equation ii） and solving it with respect to z yields
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It is important to notice that the dimension of the NMF could be zero. The following lemma 

will give us an exact order of its dimension.

Lemma 7. dim F（kρ, kρ）=n and F（kρ, kρ）⊂ int D.

Proof. Let us define d=（d0, d1, ..., dn）t∈ R+
n+1 such that Σn

i=0 a0i di=0 holds. Because the linear 

constraint must be satisfied, we can exactly choose n linearly independent vectors dh （h=1, ..., 

n－1）. It is clear that dh shows a reallocation of fixed labor among sectors. Moreover, define 

the following: for h=1, 2, ..., n and a positive scalar εh,

independent vectors dh (h = 1, · · · , n− 1). It is clear that dh shows a reallocation of

xed labor among sectors. Moreover, dene the following: for h = 1, 2, · · · , n and a

positive scalar εh,

byh ≡ byρ + εhd
h,

bxh ≡ Aρbyh = Aρbyρ + εhA
ρdh

= bkρ + εhA
ρdh

and

bzh ≡ G
−1
[byh + (I−∆)bxh]

= G
−1
[byρ + (I−∆)bxρ] + εhG

−1
[dh + (I−∆)Aρdh]

= bkρ + εhG
−1
[I+ (I−∆)Aρ]dh

Note that the rst element of the vectorAρdh is zero due to the fact that
Pn

i=0 a0id
h
i =

0 for all h. Since the rst element of bkρ is one, the rst element of bxh will be one.

So the vectors bxh (h = 1, · · · , n) are well dened. Since the rst element of ekρ is 1,

ezh is also well dened for all h. due to the fact that byρ À 0 and bkρ À 0, εh can be

chosen so that byh > 0,bxh > 0 and bzh > 0 for all h. From our way of construction,

the vectors byh,bxh and bzh satisfy Lemma 2 and the corresponding vector (xh, zh) also

belongs to F(kρ,kρ) for all h. This implies that there are n linearly independent

vectors (xh − kρ, zh − kρ). Therefore, there are exactly n linearly independent line
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Note that the first element of the vector Aρdh is zero due to the fact that Σn
i=0 a0id

h
i=0 for 

all h. Since the first element of k
∧
ρ is one, the first element of x∧h will be one. So the vectors 

x∧h （h=1, ..., n） are well defined. Since the first element of k
～ρ is 1, z～h is also well defined 

for all h. due to the fact that y∧ρ≫0 and k
∧
ρ≫0, εh can be chosen so that y

∧h>0, x∧h>0 and 

z∧h>0 for all h. From our way of construction, the vectors y∧h, x∧h and z∧h satisfy Lemma 2 

and the corresponding vector （xh, zh） also belongs to F（kρ, kρ） for all h. This implies that 

there are n linearly independent vectors （xh－kρ, zh－kρ）. Therefore, there are exactly n 

linearly independent line segments on the NMF, F（kρ, kρ）. In other words, the NMF has an 

n-dimensional facet （flat） containing the OSS, （kρ, kρ）. This completes the proof.

Using Lemma 7, we will show Lemma8.

Lemma 8. F（kρ, kρ） is a continuous correspondence of ρ∈［ρ― , 1）.

Proof. See the Appendix.

We need the following definition:

Definition. The NMF is stable if there are no cyclic paths on it.

The stability of the NMF takes very important roles in demonstrating the Turnpike 

properties as we will see soon. Under the both GCI conditions, we actually show that the NMF 

is stable as we will demonstrate in the next section. Due to the continuity of the NMF, if the 

stability of the NNF with ρ=1 would have been proved, McKenzie’s Neighborhood Turnpike 

Theorem could be applicable as shown in Takahashi （1985） and Takahashi （1992）, and finally 

we would demonstrate the following theorem:

Theorem 1. （Neighborhood Turnpike Theorem） Provided that the VMF is stable. Then for any 

ε>0, there exists aρ― >0 such that for ρ∈［ρ― , 1） and the corresponding ε（ρ）, any optimal 

path ｛kρt ｝∞ with a sufficient initial capital stock k（0） eventually lies in the ε-neighborhood 

of kρ. Furthermore, as ρ→∞ , ε（ρ）→0.

Proof. See the argument of Section 4 of Takahashi （1993）.

The Neighborhood Turnpike Theorem means that any optimal path must be trapped in 

a neighborhood of the corresponding OSS and the neighborhood can be taken as small as 

possible by making ρ close enough to one.

5　Turnpike Theorem

The full Turnpike Theorem is described as the following theorem:

Full Turnpike Theorem There is aρ― >0 close enoug to 1 such that for any ρ∈［ρ― , 1）, an 

optimal path kρ（t） with the sufficient initial capital stock will asymptotically converge to the 

optimal steady state kρ.
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ezh is also well dened for all h. due to the fact that byρ À 0 and bkρ À 0, εh can be

chosen so that byh > 0,bxh > 0 and bzh > 0 for all h. From our way of construction,

the vectors byh,bxh and bzh satisfy Lemma 2 and the corresponding vector (xh, zh) also

belongs to F(kρ,kρ) for all h. This implies that there are n linearly independent

vectors (xh − kρ, zh − kρ). Therefore, there are exactly n linearly independent line
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As we have shown, under Assumption 7, the dimension of the VMF is n. We will keep this 

assumption henceforth. On the other hand, the dynamics of the VMF is expressed by the 

n-dimensional linear difference equation （8）. To show the full turnpike theorem we need to 

strengthen the generalized capitl intensity conditionds, GCI-I and GCI-II.

Remark 3 the first to be noted that in the efficiency unit term, the full turnpike means that 

each sector’s optimal path converges to the optimal steady state. In original terms of series, 

any industry’s per-capita capital stock and output grow at the rate of industry’s TFP. Thus 

our original purpose will be accomplished by showing the Full Turnpike Theorem.

We use the following property to show the stability of the VMF.

Lemma 9. Let us consider the following difference equation system with the equilibrium xe=0,

industry’s TFP. Thus our original purpose will be accomplished by showing the Full

Turnpike Theorem.

We use the following property to show the stability of the VMF.

Lemma 9. Let us consider the following difference equation system with the equi-

librium xe = 0,

x(t+ 1) = (C+ I)x(t),

where x(t) ∈ Rn and C is an n×n matrix. If C has the negative d.d. for rows,

C+ I is a contraction for x(t) 6= 0 with the maximum norm k · k, i.e., and the

equation system is globally asymptotically stable and the Liapunov function is

V(x) = kxk, where k · k is dened as kxk = maxi ci | xi | and ci is a given set

of positive numbers. Furthermore, if C has the positive d.d. for rows, C + I

exhibits total explosiveness for x(t) 6= 0.

Proof. The rst part comes from the result in Neuman (1961,pp.27-29). On the

contrary, if C has the negative q.d.d. for rows, C + I has eigenvalues with their

absolute values greater than one. This comes from the fact that if C has the positive

d.d. for rows, then its eigenvalues have a positive real part. Thus the system is

explosive; any path will diverge from equilibrium.

We may use the second property later. We will rst prove the following theorem:
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where x（t）∈Rn and C is an n×n matrix. If C has the negative d.d. for rows, C+I is a 

contraction for x（t）≠0 with the maximum norm｜｜·｜｜, i.e., and the equation system is globally 

asymptotically stable and the Liapunov function is V（x）=｜｜x｜｜, where｜｜·｜｜, is defined as｜｜x｜｜

=maxi ci｜xi｜and ci is a given set of positive numbers. Furthermore, if C has the positive d.d. 

for rows, C+I exhibits total explosiveness for x（t）≠0.

Proof. The first part comes from the result in Neuman （1961, pp.27-29）. On the contrary, if C 

has the negative q.d.d. for rows, C+I has eigenvalues with their absolute values greater than 

one. This comes from the fact that if C has the positive d.d. for rows, then its eigenvalues have 

a positive real part. Thus the system is explosive; any path will diverge from equilibrium.

We may use the second property later. We will first prove the following theorem:

Lemma 10. Under the negative （positive） d.d., the n-dimensional NMF, F（kρ, kρ） where ρ∈

［ρ― , 1） turns out to be a linear stable （unstable） manifold.

Proof. Because bρ+I－Δ=［bρ+（I－Δ）－（1+g）G］+（1+n）G, it follows that （1/（1+g）G［bρ+I－Δ］

=（1/（1 +g））G［bρ+（I－Δ）－（1+n）G］+I. Defining C=（1/（1+g））G［bρ+（I－Δ）－（1+g）G］, Eq.（8） 

can be rewritten as:

Lemma 10. Under the negative (positive) d.d., the n-dimensional NMF, F(kρ,kρ)

where ρ ∈ [ρ, 1) turns out to be a linear stable (unstable) manifold.

Proof. Because bρ + I−∆ = [bρ + (I−∆) − (1 + g)G] + (1 + n)G, it follows

that (1/(1 + g)G[bρ + I−∆] = (1/(1 + g))G[bρ + (I−∆)− (1 + n)G] + I. Dening

C = (1/(1 + g))G[bρ + (I−∆)− (1 + g)G], Eq.(8) can be rewritten as:

η(t+ 1) = (C+ I)η(t).

Note again that η(t) = (x − kρ) and η(t + 1) = (z − kρ). Thus applying Lemma

4, under the negative d.d. (the positive d.d.), any path on NMF will converge to

(diverge from) the OSS.

From this lemma, under the Strong GCI-II condition, the local stability and the

stability of the NMF hold simultaneously. The stability of the NMF implies that

the Neighborhood turnpike holds. Thus combining both results, the following full

Turnpike theorem will be established.

Corollary. Under the Strong GCI-II condition, the full Turnpike Theorem will be

established.

Proof. To achieve the full Turnpike theorem, we need to combin the Neighborhood

Turnpike Theorem and the local stability of the OSS. The Neighborhood Turnpike

Theorem means that any optimal path should be trapped in the neighborhood of the
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Note again that η（t）=（x－kρ） and η（t+1）=（z－kρ）. Thus applying Lemma 4, under the 

negative d.d. （the positive d.d.）, any path on NMF will converge to （diverge from） the OSS.

From this lemma, under the Strong GCI-II condition, the local stability and the stability 

of the NMF hold simultaneously. The stability of the NMF implies that the Neighborhood 

turnpike holds. Thus combining both results, the following full Turnpike theorem will be 

established.
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Corollary. Under the Strong GCI-II condition, the full Turnpike Theorem will be established.

Proof. To achieve the full Turnpike theorem, we need to combin the Neighborhood Turnpike 

Theorem and the local stability of the OSS. The Neighborhood Turnpike Theorem means that 

any optimal path should be trapped in the neighborhood of the OSS. Thus if the local stability 

holds in the neighborhood of OSS, then the optimal path must jump on the stable manifold, 

here the NMF itself, and will converge to the OSS. Thus the full Turnpike theorem will be 

established.

On the other hand, to show the local stability under the GCI-I condition, we need to utilize 

the following well-known lemma by Levhari and Liviatan （1972）:

Lemma 11. Provided that det Vρxz≠0, if the following characteristic equation, given by expanding 

the Euler equation around the OSS, has λ as a root, then it also has 1/（ρλ）,

OSS. Thus if the local stability holds in the neighborhood of OSS, then the optimal

path must jump on the stable manifold, here the NMF itself, and will converge to

the OSS. Thus the full Turnpike theorem will be established.

On the other hand, to show the local stability under the GCI-I condition, we need

to utilize the following well-known lemma by Levhari and Liviatan (1972):

Lemma 11. Provided that det Vρ
xz 6= 0, if the following characteristic equation,

given by expanding the Euler equation around the OSS, has λ as a root, then

it also has 1/(ρλ),

¯̄
Vρ
xzλ

2 + (Vρ
xx +V

ρ
zz)λ+V

ρ
zx

¯̄
= 0. (16)

Proof. See Levhari and Liviatan (1972).

Lemma 12. Under the GCI-I condition, the OSS satises the local stability.

Proof. All we need to show is that det Vρ
xz 6= 0 under the GCI-I condition due

to Lemma 11. From the fact that Vx(k
ρ,kρ) = pρ(I−∆) +wρ (see Benhabib and

Nishimura (1985) for a two-sector case) and Lemma 4, we may show that

Vρ
xz = −(bρ)−1[bρ + (I−∆)]Tρ

22(b
ρ)−1

where Tρ
22 = [∂

2T (yρ,kρ)/∂k2]. Then,
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Proof. See Levhari and Liviatan （1972）.
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Proof. All we need to show is that det Vρxz≠0 under the GCI-I condition due to Lemma 11. 

From the fact that Vx（kρ, kρ）=pρ（I－Δ）+wρ（see Benhabib and Nishimura （1985） for a two-

sector case） and Lemma 4, we may show that

OSS. Thus if the local stability holds in the neighborhood of OSS, then the optimal

path must jump on the stable manifold, here the NMF itself, and will converge to

the OSS. Thus the full Turnpike theorem will be established.

On the other hand, to show the local stability under the GCI-I condition, we need

to utilize the following well-known lemma by Levhari and Liviatan (1972):

Lemma 11. Provided that det Vρ
xz 6= 0, if the following characteristic equation,

given by expanding the Euler equation around the OSS, has λ as a root, then

it also has 1/(ρλ),

¯̄
Vρ
xzλ

2 + (Vρ
xx +V

ρ
zz)λ+V

ρ
zx

¯̄
= 0. (16)

Proof. See Levhari and Liviatan (1972).

Lemma 12. Under the GCI-I condition, the OSS satises the local stability.

Proof. All we need to show is that det Vρ
xz 6= 0 under the GCI-I condition due

to Lemma 11. From the fact that Vx(k
ρ,kρ) = pρ(I−∆) +wρ (see Benhabib and

Nishimura (1985) for a two-sector case) and Lemma 4, we may show that

Vρ
xz = −(bρ)−1[bρ + (I−∆)]Tρ

22(b
ρ)−1

where Tρ
22 = [∂

2T (yρ,kρ)/∂k2]. Then,
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where Tρ22=［∂2
T（yρ, kρ）/∂k2］. Then,

detVρ
xz = −(det(bρ)−1)2 det[bρ + (I−∆)] detTρ

22

Since Tρ
22 is negative-denite, it is non-singular. Furthermore, [b

ρ + (I−∆)] has

a quasi-dominant diagonal that is positive under the GCI-I condition, it also non-

singular. Thus Vρ
xz is non-singular. On the other hand, the GCI-I condition implies

that the VMF is explosive. This means that there are n characteristic roots with

absolute value greater than one. Applying Lemma 11, this also implies that there are

n characteristic roots with its absolute value less than one. So the OSS satises the

local stability.

Thus we have established the following theorem:

Theorem 2 Under the both GCI conditions, the OSS kρ exhibits the full Turnpike

Theorem.

Proof. Under the GCI-II condition, the full Turnpike Theorem will be established

due to the above corollary. On the other hand, under the GCI-I condition, from

Lemma 12, the OSS will exhibit the local stability. Since any path on the VMF is

totally unstabl, the NMF is ”stable” and the Neighborhood Turnpike Theorem hold.

Combining both results again, the full Turnpike Theorem is also established. This

completes the proof.
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Since Tρ22 is negative-definite, it is non-singular. Furthermore, ［bρ+（I－Δ）］ has a quasi-

dominant diagonal that is positive under the GCI-I condition, it also nonsingular. Thus Vρxz is 

non-singular. On the other hand, the GCI-I condition implies that the VMF is explosive. This 

means that there are n characteristic roots with absolute value greater than one. Applying 

Lemma 11, this also implies that there are n characteristic roots with its absolute value less 

than one. So the OSS satisfies the local stability.

Thus we have established the following theorem:

Theorem 2 Under the both GCI conditions, the OSS kρ exhibits the full Turnpike Theorem.

Proof. Under the GCI-II condition, the full Turnpike Theorem will be established due to the 

above corollary. On the other hand, under the GCI-I condition, from Lemma 12, the OSS 

will exhibit the local stability. Since any path on the VMF is totally unstabl, the NMF is 

“stable” and the Neighborhood Turnpike Theorem hold. Combining both results again, the full 
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Turnpike Theorem is also established. This completes the proof.

6　ConcludingRemarks

We have demonstrated the Turnpike properties under the two types of the generalized 

capital intensity conditions. As I mentioned before, the full turnpike means that each sector’

s per-capita capital stock and output converge to the industry’s own steady state paths 

respectively. For example, the per-capita capital stock of the agriculture sector grows at its 

own rate of technical progress along its steady state, but another sector, say a manufacturing 

sector also grows at its own rate of technical progress along its own steady state. The similar 

explanation can be applicable to other sectors. Thus our theoretical result derived above is 

consistent with the evidence obtained in recent empirical research.
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Proof. Since the VMF is upper-semi continuous from its definition, all I need to establish is 
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can choose n labor redistribution vectors dh as follows:
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APPENDIX

We will prove here Lemma 8.

Proof. Since the VMF is upper-semi continuous from its denition, all I need to

establish is that F(kρ,kρ) = F(kρ) is lower-semi continuous (l.s.c.) at ρ ∈ [ρ, 1).

Under Assumption 7, we can choose n labor redistribution vectors dh as follows:

dh = (−1,−1,−1, · · · ,−1,
nX
i=0

aρ0i/a
ρ
0h,−1, · · · ,−1) (h = 0, 1, · · · , n).

This means that each producing sector transfers one unit of labor to the hth sec-

tor. From Lemma 4, dh is a continuous vector function of ρ in ρ ∈ [ρ, 1) and

that
Pn

i=0 a
ρ
0id

h
i = 0 for all h. This means that there are n linearly independent

redistribution vector dh. Let us denote these redestribution vector as dh (h =

1, · · · , n).Henceforth, we may use the notation, k(ρ),dh(ρ) (h = 1, · · · , n) and F(k(ρ))

for denoting OSS, redistribution vectors and the VMF respectively. Using dh(ρ) and

from Lemma 6, we can dene the following n linearly independent vectors for each

h (h = 1, · · · , n) : bxh(ρ) = k(ρ) + εhA(ρ)dh(ρ) and bzh(ρ) = k(ρ) + εhG
−1
[I + (I −

∆)A(ρ)]dh(ρ) where εh is chosen so that bxh(ρ) >> 0 and bzh(ρ) >> 0 (h = 1, · · · , n).

Let us arbitrarily choose a point (x, z) ∈ F(k(ρ)) . Furthermore choose (x0, z0) ∈
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This means that each producing sector transfers one unit of labor to the hth sector. From 

Lemma 4, dh is a continuous vector function of ρ in ρ∈［ρ― , 1） and that Σn
i=0a

ρ
0id

h
i=0 

for all h. This means that there are n linearly independent redistribution vector dh. Let us 

denote these redestribution vector as dh （h=1, ..., n）. Henceforth, we may use the notation, 

k（ρ）, dh（ρ） （h=1, ..., n） and F（k（ρ）） for denoting OSS, redistribution vectors and the 

VMF respectively. Using dh（ρ） and from Lemma 6, we can define the following n linearly 

independent vectors for each h （h=1, ..., n）: x∧h（ρ）=k（ρ）+εhA（ρ）dh（ρ） and z∧h（ρ）=k（ρ）

+εhG
―－1［I+（I－Δ

―
）A（ρ）］dh（ρ） where εh is chosen so that x

∧h（ρ）≫0 and z∧h（ρ）≫0 （h=1, ..., 

n）. Let us arbitrarily choose a point （x, z）∈F（k（ρ）） . Furthermore choose （x', z'）∈ F（k（ρ'）） 

where （x', z'）∈int D , （x, z）≠（x', z'） and ρ' ∈［ρ― , 1） is chosen close enough to ρ. Now let us 
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define the plain Hα is defined as follows:

F(k(ρ0)) where (x0, z0) ∈ int D , (x, z) 6= (x0, z0) and ρ0 ∈ [ρ, 1) is chosen close enough

to ρ. Now let us dene the plain Hα is dened as follows:

Hα ≡ {(x, z) ∈ D : t0[αk(ρ0) + (1−α)k(ρ),αk(ρ0) + (1−α)k(ρ)]+
nX
h=1

th[αx
j(ρ0) + (1− α)xj(ρ),αzj(ρ0) + (1− α)zj(ρ)]} where

nX
h=1

th = 1.

We can always nd an intersection (xα, zα) between Hα and the line obtained by

connecting points (x, z) and (x0, z0) unless (x, z) = (x0, z0). Since (xα, zα) is on the

plain Hα, it can also be expressed as follows:

(xα, zα) = tα0 [αk(ρ
0) + (1−α)k(ρ),αk(ρ0) + (1−α)k(ρ)]+

nX
h=1

tαh [αx
j(ρ0) + (1− α)xj(ρ),αzj(ρ0) + (1− α)zj(ρ)] where

nX
h=1

tαh = 1.

where α → 0, [αk(ρ0) + (1−α)k(ρ)] → k(ρ) and [αxh(ρ0) + (1 − α)xh(ρ),αzh(ρ0) +

(1 − α)zh(ρ)] → (xρ, zρ) for h = 1, · · · , n. Therefore (xα, zα) converges to (x, z) as

α→ 0. Also note that (xα, zα) ∈ int D due to the convexity of D and the fact that

(x0, z0) ∈ int D . On the other hand, because of the continuity of k(ρ),x(ρ) and z(ρ)

in ρ ∈ [ρ, 1). for any εα > 0 there exists δα > 0 such that |ρα − ρ| < δα implies that

kk(ρα)− [αk(ρ0) + (1− α)k(ρ)]k < εα

and for h = 1, · · · , n,

°°(k(ρα),k(ρα))− [αxh(ρ0) + (1− α)xh(ρ),αzh(ρ0) + (1− α)zh(ρ)]
°° < εα
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We can always find an intersection （xα, zα） between Hα and the line obtained by connecting 

points （x, z） and （x', z'） unless （x, z）=（x', z'）. Since （xα, zα） is on the plain Hα, it can also be 
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(xα, zα) = tα0 [αk(ρ
0) + (1−α)k(ρ),αk(ρ0) + (1−α)k(ρ)]+

nX
h=1

tαh [αx
j(ρ0) + (1− α)xj(ρ),αzj(ρ0) + (1− α)zj(ρ)] where

nX
h=1

tαh = 1.

where α → 0, [αk(ρ0) + (1−α)k(ρ)] → k(ρ) and [αxh(ρ0) + (1 − α)xh(ρ),αzh(ρ0) +

(1 − α)zh(ρ)] → (xρ, zρ) for h = 1, · · · , n. Therefore (xα, zα) converges to (x, z) as

α→ 0. Also note that (xα, zα) ∈ int D due to the convexity of D and the fact that

(x0, z0) ∈ int D . On the other hand, because of the continuity of k(ρ),x(ρ) and z(ρ)

in ρ ∈ [ρ, 1). for any εα > 0 there exists δα > 0 such that |ρα − ρ| < δα implies that

kk(ρα)− [αk(ρ0) + (1− α)k(ρ)]k < εα

and for h = 1, · · · , n,

°°(k(ρα),k(ρα))− [αxh(ρ0) + (1− α)xh(ρ),αzh(ρ0) + (1− α)zh(ρ)]
°° < εα
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where α→0, ［αk（ρ'）+（1－α）k（ρ）］→k（ρ） and ［αxh（ρ'）+（1－α）xh（ρ）, αzh（ρ'）+（1－α）

zh（ρ）］→（xρ, zρ） for h=1, ..., n. Therefore （xα, zα） converges to （x, z） as α→0. Also note 

that （xα , zα）∈ int D due to the convexity of D and the fact that （x', z'）∈ int D. On the other 

hand, because of the continuity of k（ρ）, x（ρ） and z（ρ） in ρ∈［ρ― , 1）. for any εα>0 there 

exists δα>0 such that ｜ρα－ρ｜<δα implies that

F(k(ρ0)) where (x0, z0) ∈ int D , (x, z) 6= (x0, z0) and ρ0 ∈ [ρ, 1) is chosen close enough

to ρ. Now let us dene the plain Hα is dened as follows:

Hα ≡ {(x, z) ∈ D : t0[αk(ρ0) + (1−α)k(ρ),αk(ρ0) + (1−α)k(ρ)]+
nX
h=1

th[αx
j(ρ0) + (1− α)xj(ρ),αzj(ρ0) + (1− α)zj(ρ)]} where

nX
h=1

th = 1.

We can always nd an intersection (xα, zα) between Hα and the line obtained by

connecting points (x, z) and (x0, z0) unless (x, z) = (x0, z0). Since (xα, zα) is on the

plain Hα, it can also be expressed as follows:

(xα, zα) = tα0 [αk(ρ
0) + (1−α)k(ρ),αk(ρ0) + (1−α)k(ρ)]+

nX
h=1

tαh [αx
j(ρ0) + (1− α)xj(ρ),αzj(ρ0) + (1− α)zj(ρ)] where

nX
h=1

tαh = 1.

where α → 0, [αk(ρ0) + (1−α)k(ρ)] → k(ρ) and [αxh(ρ0) + (1 − α)xh(ρ),αzh(ρ0) +

(1 − α)zh(ρ)] → (xρ, zρ) for h = 1, · · · , n. Therefore (xα, zα) converges to (x, z) as

α→ 0. Also note that (xα, zα) ∈ int D due to the convexity of D and the fact that

(x0, z0) ∈ int D . On the other hand, because of the continuity of k(ρ),x(ρ) and z(ρ)

in ρ ∈ [ρ, 1). for any εα > 0 there exists δα > 0 such that |ρα − ρ| < δα implies that

kk(ρα)− [αk(ρ0) + (1− α)k(ρ)]k < εα

and for h = 1, · · · , n,

°°(k(ρα),k(ρα))− [αxh(ρ0) + (1− α)xh(ρ),αzh(ρ0) + (1− α)zh(ρ)]
°° < εα
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and for h=1, ..., n,

F(k(ρ0)) where (x0, z0) ∈ int D , (x, z) 6= (x0, z0) and ρ0 ∈ [ρ, 1) is chosen close enough

to ρ. Now let us dene the plain Hα is dened as follows:

Hα ≡ {(x, z) ∈ D : t0[αk(ρ0) + (1−α)k(ρ),αk(ρ0) + (1−α)k(ρ)]+
nX
h=1

th[αx
j(ρ0) + (1− α)xj(ρ),αzj(ρ0) + (1− α)zj(ρ)]} where

nX
h=1

th = 1.

We can always nd an intersection (xα, zα) between Hα and the line obtained by

connecting points (x, z) and (x0, z0) unless (x, z) = (x0, z0). Since (xα, zα) is on the

plain Hα, it can also be expressed as follows:

(xα, zα) = tα0 [αk(ρ
0) + (1−α)k(ρ),αk(ρ0) + (1−α)k(ρ)]+

nX
h=1

tαh [αx
j(ρ0) + (1− α)xj(ρ),αzj(ρ0) + (1− α)zj(ρ)] where

nX
h=1

tαh = 1.

where α → 0, [αk(ρ0) + (1−α)k(ρ)] → k(ρ) and [αxh(ρ0) + (1 − α)xh(ρ),αzh(ρ0) +

(1 − α)zh(ρ)] → (xρ, zρ) for h = 1, · · · , n. Therefore (xα, zα) converges to (x, z) as

α→ 0. Also note that (xα, zα) ∈ int D due to the convexity of D and the fact that

(x0, z0) ∈ int D . On the other hand, because of the continuity of k(ρ),x(ρ) and z(ρ)

in ρ ∈ [ρ, 1). for any εα > 0 there exists δα > 0 such that |ρα − ρ| < δα implies that

kk(ρα)− [αk(ρ0) + (1− α)k(ρ)]k < εα

and for h = 1, · · · , n,

°°(k(ρα),k(ρα))− [αxh(ρ0) + (1− α)xh(ρ),αzh(ρ0) + (1− α)zh(ρ)]
°° < εα

47where ρα=αρ'+（1－ α ）ρ and｜｜•｜｜is the Euclidean norm. Furthermore as α→0, εα→0. 

Now let us also define a point （x―α, z―α） as follows:

where ρα = αρ0 + (1 − α)ρ and k • k is the Euclidean norm. Furthermore as α →

0, εα → 0.Now let us also dene a point (xα,zα) as follows:

(xα,zα) = tα0 (k(ρ
α),k(ρα)) +

nX
h=1

tαh(x
j(ρα), zj(ρα))

where (tα0 , t
α
1 , · · · , · · · , tαn) is used to dene (xα,zα). By choosing α close enough to

zero, we can make (xα,zα) close enough to (xα, zα) and (xα,zα) ∈ int D . Thus

(xα,zα) is feasible. Since it is also expressed as the linear combination of (n − 1)

linearly independent vectors xh,yh and zh, it follows that (xα,zα) ∈ F(k(ρα)). Also

note that due to our way of construction of (xα,zα), as α → 0, (xα,zα) → (xα, zα).

Now make α converge to zero, then (xα, zα)→ (xα, zα) and (xα, zα)→ (x, z). Thus

(xα,zα) ∈ F(k(ρα)) converges to (x, z) ∈ F(k(ρ)). therefore F(k(ρ)) is l.s.c. at

ρ ∈ [ρ, 1). Apply the same arguments to any point of F(k(ρ)) and any F(k(ρ)) of

ρ ∈ [ρ, 1), it follows that F(k(ρ)) is l.s.c. on [ρ, 1).
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where （tα0, tα1, ..., ..., tαn） is used to define （x―α,z―α）. By choosing α close enough to zero, we can 

make （x―α, z―α） close enough to （xα, zα） and （x―α, z―α）∈ int D. Thus （x―α, z―α） is feasible. Since it 

is also expressed as the linear combination of （n－1） linearly independent vectors xh, yh and zh, 

it follows that （x―α, z―α）∈ F（k（ρα））. Also note that due to our way of construction of （x―α, z―α）, 

as α→0, （x―α, z―α）→（xα, zα）. Now make α converge to zero, then （xα, zα）→（xα, zα） and 

（xα, zα）→（x, z）. Thus （x―α, z―α）∈F（k（ρα）） converges to （x, z）∈F（k（ρ））. therefore F（k（ρ）） 

is l.s.c. at ρ∈［ρ― , 1）. Apply the same arguments to any point of F（k（ρ）） and any F（k（ρ）） 

of ρ∈［ρ― , 1）, it follows that F（k（ρ）） is l.s.c. on ［ρ― , 1）.


