
『経済研究』（明治学院大学）第 139 号 2007 年

On the Regularity of Equilibria for Exchange Economies:
Finite Dimensional Case

Takashi SUZUKI

Ⅰ．Introduction

It is well known that in the theory of general market equilibrium, the global uniqueness of the

equilibrium, although it is a nice and desirable property, can be obtained only with the cost of very strong

assumptions (see, for instance, Arrow and Hahn [1971]). In a path breaking paper, G.Debreu [1970]

started the study of the local uniqueness (finiteness) of competitive equilibria of exchange economies. He

considered a topological space of all (smooth) economies and concluded that the economies with locally

finite and structurally stable equilibria are open and dense subset of the space. Such economies are now

called the regular economies. This result has been extended to several directions, for example, to

production economies, the exchange economies with a continuum of traders and so on by Smale [1974],

Dieker [1975], Mas-Colell [1975, 1977], Kehoe [1983], Rajan [1977] and many others. The reader can consult

the book of Mas-Colell [1985] for related works and literatures.

On the other hand, Kehoe and Levine [1985], Balasko [1997] and Chichilnisky and Zhou [1998] and

others have extended Debreu’s result to economies with infinite dimensional commodity spaces.

The purpose of this note is to settle the methodological foundations in order to pursue the stream

of these researches. In a subsequent paper, we will generalize the result of the present paper to the case

of infinite dimensional commodity spaces. Our method is basically based on that of Balasko. He

parameterized ‶the equilibrium manifold" by weights of a social welfare function (the weighted sum of

individual utility functions) on Pareto optimal allocations, rather than (as usual) by the price vectors

through the excess demand equation. This clever trick will make us to avoid the fundamental difficulty

arising in the infinite dimensional settings mentioned above. This approach was started by Negishi [1960]

for proving the existence of competitive equilibria and used by Kehoe and Levine [1985] for the study of
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the local uniqueness of dynamic equilibria.

The next section presents the model and results. In appendix, we collect the mathematical

concepts and related results used in our analysis.

Ⅱ．The model and results

Consider an exchange economy with m consumers. The commodity space of our economy is

Rl-dimensional Euclidean space R l.

The consumer i’s consumption set X i is defined by

R RX i/{x/(x) t�R l*x t>0 t/1...l}6R l
++, i/1...m. (1)

As usual, The consumer i’s preference is represented by a utility function

Ru i:X i�R, x�u i(x), i/1...m. (2)

The consumer i’s initial endowment vector is denoted by w i /( w1
i ... w l

i )� X i . The initial

endowments profile is denoted by w 6(w1...wm)�7m
i=1X i. We will denote `/7m

i=1X i and as will be

seen, we identify each vector (w1...wm)�` as an economy.

We assume that the utility function satisfies the following conditions.

(U-1) u i is twice continuously differentiable, namely that of class C2 on X i.

Let Du i(x)/(�0u i(x),�1u i(x),...� lu i(x)) be the derivative (tangent map) of u i at x�X i, and

D2u i(x)/�
�0�0u i(x) �0�1u i(x) �0� lu i(x)

�1�0u i(x) �1�1u i(x) �1� lu i(x)

}}}}}}}}} }}}}}}}}} }}}}}}}}}

� l�0u i(x) � l�1u i(x) � l� lu i(x) � (3)

be the second derivative, where � tu i(x)/limh�0(1#h)(u i(x0,...,x t+h,...x l),u i(x0,...,x t,...x l)), and so

Ron. For every x�X i, D2u i(x) is considered to be a linear map from R l to itself. We assume for every i,

(U-2) u i is strictly differentiably monotone, i.e., Du i(x)]0 for every x�X i.

R(U-3) D2u i(x) is a nondegenerate, negative definite bilinear form on R l, namely that

R(y,D2u i(x)y)C0 for every y�R l and the equality holds only when y/0.

(U-4) for every sequence xn/(x t
n)�X i such that x t

n�0 for some t, it follows that u i(xn)�,y.

RNote that the assumption (U-3) implies that the linear map D2u i(x) is a linear isomorphism of R l

to itself. The assumption (U-4) will be sometimes called Inada condition.

The list {u i,w i}m
i=1 is called an economy and denoted by E. From now on, we fix the utility

functions and parameterize economy by the endowment vectors. Therefore the set`/7 iX i is the space

of all economies. Therefore we will often call an endowment profile w/(w i) simply an economy.
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A price vector in the economies is an l-vector p/(p t)]0. For a given commodity vector x/(x t),

the value of x evaluated by the price p is defined by the inner product px/6 l
t=0p tx t. An m-tuple of

consumption vectors (x1,...,xm)�7 iX i is called an allocation. The allocation is said to be feasible if 6 ix i

/6 iw i.

Definition 1：An allocation (x i) is said to be Pareto optimal if it is a solution of the following social

welfare maximization problem;

RGiven l/(l2...lm)�Rm-1
++ ,

maximize u1(x1)+6
m

i=2
l iu i(x i) subject to 6

i
x i/6

i
w i. (4)

It is easy to verify that the solution of this maximization problem exists. As will be shown in

Proposition 1, the solution x i associated with l is a smooth function of l/(l2...lm). Therefore we will

denote them by x i (l).

On account of the second fundamental theorem of welfare economics, a Pareto optimal allocation

which satisfies the budget constraints of all consumers is a competitive equilibrium. The following

Negishi equation (Balasko [1997a]) then express this property of the competitive equilibrium.

n i(l,w)/Du i(x i(l))(x i(l),w i)/0, i/2...m. (5)

Note that the first consumer’s budget equation follows from the feasibility condition; 6m
i=1(x i,

w i)/0 and the first order conditions of the maximization problem, namely that Du1(x i)/l i

Du i(x i),i/2...m. See the proof of Proposition 1. The next definition is due to Balasko [1997a].

RDefinition 2：A pair (l,w)�Rm-1
++ -` is an equilibrium if it is a solution of the Negishi equation systems

n i(l,w)/Du i(x i(l))(x i(l),w i)/0, i/2...m.

Example：There exists one consumer. The utility function is of log-linear form,

u(x)/6
l

t=0
d tlogx t, 0?d t?1. (6)

Then we have,

Du(x)/(
1
x0 ...

d l

x l), (7)

and
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D2u(x)/,�
1

(x0)2 0 0 � 0

0
d

(x1)2 0 � 0

��

0 0 0 �
d l

(x l)2
� . (8)

RLet G�Rm-1
++ -` denote the set of equilibria. The projection map p:G�` is the restriction to G of

the natural projection (l,w)�w.

Proposition 1：The Negishi function defined by

R Rn�Rm-1
++ -`�Rm-1, (l,w)�n(l,w)/(n2(l,w)...nm(l,w))

is of class C1.

Proof：First we shall show that the map l�x i(l)<, i/2...m is smooth. Note that the function is

determined implicitly by the first order condition of the social welfare maximization problem with

a resource constraint;

6
i
x i,6

i
w i/0 (9)

Du1(x i),l iDu i(x i)/0, i/2...m. (10)

It is sufficient to check that the Jacobian matrix of the above equation system

�
I I I � I

,D2u1 l2D2u2 0 � 0

,D2u1 0 l3D2u3 � 0

� � � �

� � � �

,D2u1 0 0 � lmD2um
� (11)

is invertible (Theorem A1). This matrix is equivalent to

�
I 0 0 � 0

,D2u1 D2u1+l2D2u2 D2u1 � D2u1

,D2u1 D2u1 D2u1+l3D2u3 � D2u1

� � � � �

� � � � �

,D2u1 D2u1 D2u1 � D2u1+lmD2um
� . (12)
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Therefore it suffices to show that the matrix

M=�
D2u1+l2D2u2 D2u1 � D2u1

D2u1 D2u1+l3D2u3 � D2u1

� � �

� � � �

D2u1 D2u1 � D2u1+lmD2um� (13)

Ris invertible. Let v/(v2...vm)�(R l)m-1 and consider the equation Mv/0. Then we have

(D2u1+l jD2u j)v j+D2u1r6k�j
vk�/0, j/2...m. (14)

Making the inner product with the vector v j then yields

rv j,(D2u1+l jD2u j)v j�+rv j,D2u1r6k�j
uk��/0, j/2...m, (15)

which simplifies into

(l jv j,D2u jv j)+rv j,D2u1r6
m

k=2
uk��/0, j/2...m. (16)

We add up these equations for i from 2 to m,

6
m

j=2
l j(v j, D2u jv j)+rr6

m

j=2
v j�,D2u1r6

m

j=2
v j�� =0. (17)

Since D2u j are negative definite, each term in the sum of the left hand side of (14) is C 0,

hence each term must be 0,

rr6
m

j=2
v j�, D2u1r6

m

j=2
v j��/0, l j(v j,D2u jv j)/0, j/2...m. (18)

Therefore we have v2/�/vm/0 as desired. (Q. E. D)

Therefore by construction, the Negishi map

n i((l i),(w i))/Du i(x i(l))(x i(l),w i)

is of class C1 with respect to (l,w)/((l i),(w i)).

RProposition 2：The set of equilibria G is a smooth submanifold of Rm-1-` of codimension m,1.

Proof：We shall prove this proposition by applying the regular value theorem (Theorem A2, appendix),

Rwhich amounts to prove that 0�Rm-1 is a regular value of the map n, which is smooth by

R RProposition 1. Let Dn(l,w) : Rm-1-Tw`�Rm-1 denote the tangent map (derivative) of map n at

(l,n) �G, where Tw` is the tangent space of ` at w. We denote the tangent map Dn(l,w) as

(Dn i(l,w))m
i=2, which is defined by the m,1 coordinate mappings of the derivatives of n i with

respect to (l,w i...,wm). Note that the partial derivative of n i with respect to w j (j4i) is 0. The
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derivative of n i is then written as

Dn i(l,w i)(lC,wE i)=6
m

j=2

�n i(l,w i)
�l j

lC i+6
m

t=1

�n i(l,w i)
� tw t

i
wE t

i , (19)

R Rwhere lC�Rm-1 and wE i�Rm-1 are tangent vectors. In order to show that the Dn(l,w) is

Ronto, it suffices to prove that a restriction of this map to some subspace of Rm-1-Tw` is

onto. Pick an arbitrary period t. The Jacobian matrix of Dn with respect to (w t
2...w t

m) is

�
� tu2(x2(l)) 0 � 0

0 � tu3(x3(l)) � 0

� � �

� � �

0 0 � � tum(xm(l))�, (20)

which is obviously of rank m,1 by the assumption (U-2). (Q. E. D.)

By Proposition 2, it follows that the projection map p:G�`, (l,w)�w is smooth, since it is a

Rcomposition of smooth maps, the canonical embedding G�Rm-1
++ -` and the canonical projection

Rmap Rm-1
++ -`�`.

We now come up with the definition of our main theme of this paper.

Definition 3：a l-equilibrium (l,w)�G is called regular if it is a regular point of the projection map

p:G�`. The regular value w � ` is called a regular economy. An economy which is not regular is

called critical.

An important property of the map p is the following.

Proposition 3：The projection map p : G�` is proper, that is, its inverse p-1(K) of every compact set

K�` is compact.

Proof：Let K be a compact subset of ` and K i be the image of K by the restriction of the natural

Rprojection map (x i)�x i. The set K i is therefore a compact subset of X i/R l
++. The utility function

Ru i:X i�R being smooth, hence continuous, so that the image u i (K i) is compact, hence bounded by

R Rsome b i�R, i/1...m. Define a subset L of R lm by

RL/{(x i)�R lm
++*6

i
x i/6

i
w i, u i(x i)Bb i, i/1...m}.

RWe claim that the set L is compact. First for each i/1...m, define the set L i by L i/{x i�Rm
++*x iC

6 iw i,u i(x i)Bb i}. The set L i is bounded since 0 is a lower bound of L i and 6 iw i is an upper

bound. Next the set L i is closed. For let (xn),n/1,2,... be a sequence in L i with xn�x*. Clearly

Rx*C6m
i=1w i and by the continuity of u i, we have u i(x*)Bb i. It remains to show that x*�R l

++.

Obviously x*B0. Since u i(x*)Bb i>0, it is impossible that x t
*/0 for any t by assumption (U-2).

Therefore L i is compact, hence the product 7 iL i is also compact by the Tychonoff theorem. As a

『経済研究』（明治学院大学）第 139 号

6



closed subset of 7 iL i, the set L is compact.

The individual rationality means that if x�` is an equilibrium allocation associated with w�`,

then the inequality u i(x i)Bu i(w i) is satisfied for all i/1...m. This implies that all equilibrium

allocations (x i) associated with endowments w�K satisfy the inequality u i(x i)Bu i(w i)Bb i is

satisfied for all i/1...m. In other words, if (w i)�K, then (x i) � L. We now claim that the set of

Pareto optimal allocations associated with endowments (w i)�K is a closed subset of a compact

set L, hence compact.

Let ( xn
i ),n/1,2,... be a sequence of the solutions of social welfare maximization problem

associated with the endowments (wn
i) in K such that xn

i�x*
i . Then for each n, there exists a social

welfare weight (ln
i)m

i=2 which satisfies the first order conditions

6
i
xn

i,6
i
wn

i/0, (21)

Du1(xn
i),ln

iDu i(xn
i)/0, i/2...m, n/1,2,.... (22)

Since K is compact, we may assume wn
i �w*

i , i/2...m. For each n, we have ln
i /�1u1(xn

1 )#

�1u i(xn
i). Since the partial derivative are continuous and xn

i � x*
i , it follows that ln

i � l*
i /

�1u1(x*
1 )#�1u i(x*

i ) by the assumption (U-2). Clearly one has

6
i
x*

i ,6
i
w*

i /0, (23)

Du1(x*
1 ),l*

i Du i(x*
i )/0, i/2...m, n/1,2,.... (24)

This shows that the set of Pareto optimal allocations associated with endowments in K is a closed

subset of L, as desired. The set of associated welfare weights is then necessarily a compact subset

R RH of Rm-1
++ . Since p-1(K)/(H-K)�G and G is closed in Rm-1-`, it follows that p-1(K) is

compact. (Q. E. D.)

The next proposition which characterizes the regular and/or singular equilibria will be useful for

the subsequent analysis.

Proposition 4： The l-equilibrium (l,w)�G is critical if and only if

det
Dn(l,w)

Dl
/0,

where det A means the determinant of a matrix A.

Proof：The tangent space of G at (l,w) and the derivative map of the projection p are written as

R RT (l,w)G/�(lC,wE)�Rm-1-R lm*Dn(l,w)
Dl

lC+
Dn(l,w)

Dw
wE/0�,
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and

RDp:T (l,w)G�R lm,(lC,wE)�wE,

R Rwhere lC�Rm-1 and wE�R lm are the tangent vectors.

Since dimentionT (l,w)G/lm, the map Dp is onto if and only if the linear subspace of T (l,w)G of the

form {(lC,wE)�T (l,w)G*wE/0} contains the linear space other than {0}. The necessary and sufficient

condition for this is that the linear equation Dn(l,w)
Dl

lC/0 has a nonzero solution lC40, namely

that det
Dn(l,w)

Dl
/0. (Q. E. D.)

The fundamental properties of the regular economy is that they have finitely many (regular)

equilibria which are locally stable and unique.

Theorem 1： If w is a regular economy, then the set of l-equilibria associated with w is finite.

Proof： By Proposition 4, a l-equilibrium (l0,w0)�G is regular if and only if det
Dn(l,w)

Dl
40. Then by

the implicit function theorem (Theorem A1), we can take a neighborhood U0 of w0 such that l is a

C1 function of w and n(l(w),w)/0 for all w�U0. Let G0/{(l,w)�G*w�U0} and define the map

r:U0�G0 by r(w)/(l(w),w). We then have p~r/ identity on U0, which means that p restricted

to G0 is a diffeomorphism between U0 and G0 with the inverse r.

Let w be regular. Since p is a proper map by Proposition 3, the set p-1(w) is compact. In order to

show that the set p-1(w) is finite, it suffices to show that p-1(w) is discrete. Take open sets U0

and G0 of the preceding discussion. We claim that p-1(w)�G0 is one point set {(l(w),w)}. If not,

{(l(w),w)} contains at least two distinct points both of which are mapped to w by the projection

p. This contradicts the fact that p restricted to G0 is bijective. (Q. E. D.)

RLet R be the set of regular economies. We will show in Theorem 3 that R is open subset of `/R lm
++. The

next theorem shows that the regular equilibrium is locally unique and moves continuously when the

economy changes continuously (locally stable).

Theorem 2：For every w�R, there exists an open neighborhood V of w in R such that the preimage

p-1(w) is the disjoint union of a family of open subsets Un of p-1(R) and the restriction pn :

Un�V of p to each Un is a homeomorphism.

Proof：By Theorem 2, p-1(w) is a finite set {(l1,w)...(lk,w)}. As in the proof of Theorem 1, we can take

open disjoint neighborhoods U �
1...U �

k of regular equilibria (l1,w)...(lk,w) such that the restriction

of p to U �
i is a diffeomorphism with V i/p(U �

i), i/1...k.

We claim that the image of a closed set by the proper map p is closed. For let C be a closed set and

take a converging sequence {yn} in p(C), yn�y*. The set Y/{yn}�{y*} being compact, p-1(Y)

is compact subset of C by the properness of p. Take xn�p-1(yn) for each n. Then we can assume

that xn�x*�p-1(Y)�C. Since the projection is continuous, we have y*/p(x*)�p(C), as

desired.
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Since the set G'(U �
1�...�U �

k) is closed in G, its image by the map p is closed. Define the set V by

V/(V1�...�Vk)'p(G'(U �
1�...�U �

k)).

Clearly the set V is open in `. We show that w�V. Since w��k
i=1V i, it suffices to show that

w�p(G'(U �
1�...�U �

k)). This follows from the fact that p-1(w)�U �
1�...�U �

k. Define Un/U �
n�

p-1 (V). The restriction pn /p*Un is then a homeomorphism between Un and p(Un )/V. It

remains to prove that p-1(V)/�k
n=1Un. Suppose not. Then there exists x��p-1(V) such that x��

Un for some n. Then x� must belong to G'(U �
1�...�U �

k), which implies that w�/p(x’)�p(G'(U �
1

�...�U �
k)). Therefore w��V, contradicting the choice of x��p-1(V).

Finally we prove that the size of the regular economies is ‶big" in the space of all economics, in other

words, the size of singular economies is ‶small" in the set `.

Theorem 3：The set of singular economies is a closed subset of ` which has measure zero.

Proof：It follows from theorem A3 in Appendix that the set of critical economies, as the set of critical

values of a smooth map p:G�`, is of measure zero, since dimension G/dimension `. By

Proposition 4, the set of critical equilibria is a closed subset of G, since the function det
Dn(l,w)

Dl
is

continuous. The set of critical economies is therefore closed, since it is a the image of a proper map

p. (Q. E. D.)

Appendix

In this appendix, we collect mathematical concepts and results which are used in the text for reader’s

convenience.

Let E and F be Banach spaces and U�E be open. A map �:U�F is said to be linear if

f(ax+by)=af(x)+bf(y) (25)

Rfor every x,y�E and every a,b�R. This idea of linearity to the idea of multi-linear map. Let E1...En, F

be Banach spaces. A map y:E1-...-En�F is said to be n-multi-linear if y(x1...xn) is linear in each

variable separately. For instance, the linearity in the first variable means that

y(ax1+by1...xn)=af(x1...xn)+bf(y1...xn). (26)

The space of n-multi-linear maps of E1...En to F is denoted by L(E1...En,F). When E1=...=En

=E, it is denoted by Ln(E,F). In particular for k=1, we usually write L1(E,F)=L(E,F). This is nothing

but the space of linear maps of E to F. Banach spaces E and F are said to be isomorphic if there exists a

bijective (namely one to one and onto) and continuous map f of E to F whose inverse f-1 is also

continuous. Two isomorphic Banach spaces are considered to be the same space. Hence if E and F are
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isomorphic, we often write E=F.

R RIn the following, we assume that E1...En=Rk and F=R l. Therefore every element y of Ln(E,F)

R R Ris continuous and we can identify the space of linear maps of E=Rk to F=R l or L(E,F) with Rkl, since a

point y in L(E,F) has kl ‶coordinates" y j(e i), i=1...k, j=1...l, where e i=(0...1...0) with l in i-th

Rposition. Similarly, we can identify Ln(E,F) with Rknl. Moreover, we can show that L(E,Ln-1(E,F))=

Ln(E,F). Indeed. let f�L(E,Ln-1(E,F)). Since f(x1)�Ln-1(E,F), we can define a map y:En�F by

y(x1...xn)=f(x1)(x2...xn). Obviously the map f�y is bijective and linear, hence L(E,Ln-1(E,F)) and

Ln(E,F) are isomorphic.

R RLetU be an open subset of E=Rk. A map f:U�F(=R l) is called differentiable at x � U if there is

a continuous linear map Df(x)�L(E,F) such that

lim
h�0

�f(x+h),f(x),Df(x)�
�h�

=0. (27)

The linear map Df(x)�L(E,F) is called the derivative of f at x. An advantage of this definition of the

derivative is ‶coordinate free", hence it can be applied to the case of general Banach spaces. When we

R Ruse the coordinates of E=Rk and F=R l , f(x)=(f1(x)...f l(x)), the derivative can be written in the

standard matrix form;

Df(x)=�
�1f1(x) � � lf1(x)

� � �

�1f l(x) � � lf l(x)� . (28)

This k-l matrix is often called the Jacobian matrix of f.

For every integer rB0, the r-th derivative Drf(x) of f at x�U is defined inductively

Drf(x)6D(Dr-1f)(x):U�L(E,Lr-1(E,F))6Lr(E,F) (29)

which maps x atU to an n-multi-linear map of E to F. A map f is said to be of class Cr at x�U if this map

is continuous. It is equivalent with that every partial derivative (in the usual sense) �nf j

�x i1...�x in
(x),1Ci1...

inCk, 1CjCl, exists and continuous.

We can also give a ‶coordinate free" definition of the partial derivative. Let E = E1.E2 (direct sum),

where E1 and E2 are Banach spaces, and U�E is open subset of E. For a map of class Cr f:U�F, the

partial derivative with respect to E1 is defined by

�1f(x)6Df(x)(e1,0), e1�E1. (30)

The partial derivative with respect to E2 is defined similarly. The next theorem is of central

importance in the differential calculus on manifolds (Abraham et al [1981, p. 121]).

Theorem A1 (Implicit function theorem)：Let U�E,V�F be open and f:U-V�F be of class Cr(rB1).

For some x0�U and y0�V, assume that �2f(x0,y0):F�F is an isomorphism. Then there are
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neighborhoods U0 of x0 and W�F of f(x0,y0), and a unique Cr map g:U0-W�Vsuch that for all

(x,z)�U-W,

f(x,g(x,z))=z.

We now give the definition of the differentiable manifold.

Definition A1：A (Hausdorrf) topological spaceM is a k-dimensional manifold if there exist an open cover

{Ua} and local isomorphisms fa on Ua to M such that fb~f-1
a :fa(Ua�Ub,)�fb(Ua�Ub) is

bijective and of class Cr for each a and b.

Since (fb~f-1
a
-1)-1=fa~f-1

b :fb(Ua�Ub)�fa(Ua�Ub), the inverse of fb~f-1
a is also of class Cr,

so that it is Cr-diffeomorphism. (Ua,fa) is called the chart and the family of all charts is called an atlas.

Let f:M�N be a map from a manifoldM to a manifold N. The map f is said to be at class Cr, if the

map yb~f~f-1
a from fa(Ua) to yb(Vb) is of class Cr, where (Ua,fa) and (Vb,yb) are charts ofM and N,

respectively. This definition does not depend on the choice of the coordinate charts. Indeed, let (Ug,fg)

and (Vd,yd) be another charts of M and N. Since yd~f~f-1
g =(yd~y-1

b )~(yb~f~f-1
a )~(fa~f-1

g ) and

yd~y-1
b and fa~f-1

g are of class Cr by definition, yd~f~f-1
g is of class Cr. As a special case, a Cr curve

through p � M is a Crmap from (,X,X) toM such that c(0)=p. Two Cr curves c and d are equivalent if

and only if cB(0)(6d(fa~c)#dt(0))=dC(0), where (Ua,fa) is a chart ofM such that p�Ua. This definition

of the equivalence relation is also independent of the choice of the coordinate chart. Let (Ub,fb) be

another chart with p�Ub. From fb~c=(fb~f-1
a )~(fa~c) and fb~d=(fb~f-1

a )~(fa~d), it follows that

d(fb~c)#dt=D(fa~f-1
a )d(fa~c)#dt and d(fb~d)#dt=D(fb~f-1

a )d(f-1
a ~d)#dt. Since D(fb~f-1

a ) is a

linear isomorphism, d(fb~c)#dt=d(fb~d)#dt if and only if d(fa~c)#dt=d(fa~d)#dt.

The equivalence class is denoted as [c]p and called a tangent vector at p. Let TpM be the set of all

tangent vectors at p and call the tangent space at p. It is easy to see that TpM is a k-depersonal vector

space. Let (Ua,fa) be a coordinate chart with p�Ua. Without loss of generality, we may assume that

Rf(p)=0�Rk. Define the smooth curves c i(t)=f-1(0,...,t,...,0), where t is at the i-th coordinate. Then

the curves [c i]p, i=1...k, make up with a basis of TpM.

Let f be a Cr map from a manifold M to a manifold N. The tangent map (derivative) at p�M of a

Cr map f is a linear map Df(p):TpM�Tf(p)N defined by

Df(p)(RcSp)=[f~c]f(p).

We have to check that this definition is independent of the choice of curves representing the

equivalence class. Let c1 and c2 be two curves such that [c1]p=[c2]p. This means that d(fa~c1)#dt=

d(fa~c2)#dt, where (Ua,fa) is a chart on M with p�Ua. We want to show that [f~c1]f(p)=[f~c2]f(p).

Since yg~f~c i=(yg~f~f-1
a )~(fa~c i), i=1,2, where (Vg,yg) is a chart onNwith f(p)�Vg, one has d(yg~f~
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c i)#dt=D(yg~f~f-1
a )d(fa~c i)#dt, i=1,2. Since d(fa~c1)#dt=d(fa~c2)#dt, we get d(yg~f~c1)#dt(0)=

d(yg~f~c2)#dt(0).

Let f:M�N be a smooth (Cr)map between manifoldsM and N. A point q�N is a regular value of

f (or f is transversal to {q}) if for every p�f-1(q), Df(p):TpM�TqN is surjective (onto). Note that when

dimensionM ? dimension N, a point q is regular value only if q � f(M). When dimensionM=dimension

N, q�N is regular value if and only if Df(p) is isomorphism between TpM and TpN at every p�f-1(q). A

point of N which is not regular point is called a critical point.

Theorem A2 (Regular value theorem): Let f:M�N be a smooth (Cr) map between manifolds M and N

such that dimensionM B dimensionN and q�N a regular value of f. Then f-1(q) is a submanifold

of M such that dimension f-1(q)=dimension M , dimension N

RA subset R of R l is called a rectangular solid if it is of the form R={(x1...x l)*ahCxhCbh, h=1...l}

for vectors a=(a1...a l) and b=(b1...b l) with ah?bh for all h=1...l. The volume of the rectangular solid

R is defined by

volR=7
l

h=1
(bh,ah).

RA subset A�R l is said to have measure zero if for every X>0, there exist countably many

rectangular solids R1,R2... such that A���
j=1R j and 6�

j=1volR j?X.

The next theorem is a key of the analysis of the text.

Theorem A3 (Sard): Let f:M�V be a Cr map where M is a manifold of dimension k and V is an open

Rsubset of R l (hence a manifold of dimension l). If kBl and r>max{0,k,l}, then the set of regular

values of f has measure zero.
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